QCD thermodynamics on the lattice: Approaching the continuum limit with physical quark masses

Z. Fodor

University of Wuppertal, Eotvos University Budapest, Forschungszentrum Juelich

results of the Wuppertal-Budapest group

FAIR Lattice QCD, 23-24 November, 2009, GSI

Outline

- Introduction
- The T>0 QCD transition
- 3 Discrepancy: 2006 litarature
- Mew results: Wuppertal-Budapest & 'hotQCD'
- Summary

Phase diagram and its uncertainties

physical quark masses: important for the nature of the transition n_f =2+1 theory with m_q =0 or ∞ gives a first order transition intermediate quark masses: we have an analytic cross over (no χ PT)

F.Karsch et al., Nucl.Phys.Proc. 129 ('04) 614; G.Endrodi et al. PoS Lat'07 182('07);

de Forcrand, S. Kim, O. Philipsen, Lat'07 178('07)

continuum limit is important for the order of the transition:

 n_f =3 case (standard action, N_t =4): critical $m_{ps}\approx300$ MeV different discretization error (p4 action, N_t =4): critical $m_{ps}\approx70$ MeV the physical pseudoscalar mass is just between these two values

- theoretical prediction: SU(2) second order, SU(3) first order
 ⇒ Polyakov loop behavior: SU(2) singular power, SU(3) jump
- data do not show such characteristics!

Finite size scaling in the quenched theory

look at the susceptibility of the Polyakov-line first order transition (Binder) \Longrightarrow peak width \propto 1/V, peak height \propto V

finite size scaling shows: the transition is of first order

The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675 finite size scaling study of the chiral condensate (susceptibility)

$$\chi = (T/V)\partial^2 \log Z/\partial m^2$$

phase transition: finite V analyticity $V \rightarrow \infty$ increasingly singular (e.g. first order phase transition: height \propto V, width \propto 1/V) for an analytic cross-over χ does not grow with V

two steps (three volumes, four lattice spacings):

a. fix V and determine χ in the continuum limit: a=0.3,0.2,0.15,0.1fm

b. using the continuum extrapolated χ_{max} : finite size scaling

How to get rid of the discretization errors?

renormalize the susceptibility the same way as the pressure

$$p(T) \propto \log Z(T \neq 0)/V_4 - \log Z(T = 0)/\bar{V}_4$$

p(T) has a continuum limit and we can use $m_r = Z_m \cdot m$

$$\chi_r(T) = \partial^2/(\partial m_r^2) \left[\log Z(T \neq 0) / V_4 - \log Z(T = 0) / \bar{V}_4 \right]$$

construct a quantity in continuum: Z_m drops out from $m^2 \partial^2 / \partial m^2$

$$\implies m_r^2 \cdot \chi_r(T) = m^2 \cdot [\chi(T \neq 0) - \chi(T = 0)]$$

we will study a dimensionless combination of it:

$$T^4/m^2 \cdot [\chi(T \neq 0) - \chi(T = 0)]$$

• finite size scaling analysis with continuum extrapolated $T^4/\text{m}^2\Delta\chi$

the result is consistent with an approximately constant behavior for a factor of 5 difference within the volume range chance probability for 1/V is 10^{-19} for O(4) is $7 \cdot 10^{-13}$ continuum result with physical quark masses in staggered QCD:

the QCD transition is a cross-over

The transition temperature: results and scaling

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46

Chiral susceptibility

 T_c =151(3)(3) MeV $\Delta T_c = 28(5)(1) \text{ MeV}$

Quark number susceptibility

 T_c =175(2)(4) MeV $\Delta T_c = 42(4)(1) \text{ MeV}$

Polyakov loop

 $T_c = 176(2)(4) \text{ MeV}$ $\Delta T_c = 38(5)(1) \text{ MeV}$

Literature: discrepancies between T_c

Bielefeld-Brookhaven-Riken-Columbia Coll. (+MILC='hotQCD'):

M. Cheng et.al, Phys. Rev. D74 (2006) 054507

 T_c from $\chi_{\bar{\eta}_{ab}}$ and Polyakov loop, from both quantities:

 $T_c = 192(7)(4) \text{ MeV}$

Wuppertal-Budapest group (WB):

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46

chiral susceptibility: T_c =151(3)(3) MeV

Polyakov and strange susceptibility: $T_c = 175(2)(4) \text{ MeV}$

'chiral T_c ': \approx 40 MeV; 'confinement T_c ': \approx 15 MeV difference

both groups give continuum extrapolated results with physical m_{π}

Literature: discrepancies between T dependences

Reason: shoulders, inflection points are difficult to define? Answer: no, the whole temperature dependence is shifted

for chiral quantities \approx 35 MeV; for confinement \approx 15 MeV this discrepancy would appear in all quantities (eos, fluctuations)

150 MeV transition temperature: isn't it a bit too small? lattice works in $V \rightarrow \infty$, which gives much smaller T_c

T_c strongly depends on the geometry

nanotube-water doesn't freeze, even at hundred degrees below 0°C exploratory study: A. Bazavov and B. Berg, Phys.Rev. D76 (2007) 014502 use 'confined' spatial boundary conditions: more like experiments

large deviation (upto 30 MeV) from the infinite volume limit if V $\to \infty$ is 150 MeV a 100 fm³ system might have 170 MeV

Possible reasons for the discrepancy

"Non-lattice artefact/formulation" related reasons

- a. bug in the codes
- b. systematic errors are largely underestimated

"Lattice artefact/formulation" related reasons

- a. the pion mass is not small enough:
- 'hotQCD' 230MeV ⇒ shift of 5 MeV, WB: 135 MeV pseudogoldstone
- b. not small enough lattice spacings: new 'hotQCD'/WB upto N_t =8/12
- c. actually it is not QCD, what we are studying (most large scale thermodynamics studies use staggered fermions)

Discretization errors in the transition region

b. we are in the scaling regime (a^2 in staggered)

we always have discretization errors: nothing wrong with it as long as a. result: close enough to the continuum value (error subdominant)

various types of discretization errors \Rightarrow we improve on them (costs)

we are speaking about the transition temperature region interplay between hadronic and quark-gluon plasma physics smooth cross-over: one of them takes over the other around T_c

both regimes (low T and high T) are equally important improving for one: $T \gg T_c$, doesn't mean improving for the other: $T < T_c$

example: 'expansion' around a Stefan-Boltzman gas (van der Waals) for water: it is a fairly good description for T>300° claculate the boiling point: more accuracy needed for the liquid phase how fast can we reach the continuum pressure at $T=\infty$?

p4 action is essentially designed for this quantity $T \gg T_c$

asgtad designed mostly for T=0 physics (but good at high T, too)

stout-smeared one-link converges slower but in the a² scaling regime (e.g. extrapolation from N_t =8,10 provides a result within about 1%)

transition temperature for remnant of the chiral transition: balance between the chirally broken and chirally symmetric sectors chiral symmetry breaking: 3 pions are the pseudo-Goldstone bosons

staggered QCD: 1 pseudo-Goldstone instead of 3 (taste violation) staggered lattice artefact ⇒ disappears in the continuum limit WB: stout-smeared improvement is designed to reduce this artefact

Scaling for the pion splitting

scaling regime is reached if a² scaling is observed asymptotic scaling starts only for $N_t > 8$ (a ≤ 0.15 fm): two messages a. N_t =8,10 extrapolation gives 'p' on the \approx 1% level: good balance b. stout-smeared improvement is designed to reduce this artefact most other actions need even smaller 'a' to reach scaling

Y.Aoki et al. [Wuppertal-Budapest Collaboration] arXiv:0903.4155

independently which quantity is taken (we used physical masses)

⇒ one obtains the same 'a' and T, result is safe

T>0 results: strange susceptibility

Compare the Wuppertal-Budapest results [Y.Aoki et al. JHEP 0906:088.2009] with 'hotQCD'

'hotQCD' results are on N_t =8, WB results are on N_t =8,10,12,(16) 'hotQCD': results with two different actions are almost the same WB: for large T one extrapolates according to the known a^2 behaviour WB: no change in the lattice results compared to our 2006 paper note, that the experimental value of f_K decreased by 3% since 2006

about 20 MeV difference between the results

T>0 results: chiral condensate

Compare the Wuppertal-Budapest results [Y.Aoki et al. JHEP 0906:088,2009] with 'hotQCD'

'hotQCD' results are on N_t =8, WB results are on N_t =8,10,12 'hotQCD': results with two different actions are almost the same WB: no lattice spacing dependence observed for N_t =8,10,12 WB: no change in the lattice results compared to our 2006 paper

about 35 MeV difference between the results

transition temperatures for various observables

	$\chi_{ar{\psi}\psi}/\mathit{T}^{4}$	$\chi_{ar{\psi}\psi}/\mathit{T}^2$	$\chi_{ar{\psi}\psi}$	$\Delta_{I,s}$	L	χ_{s}
WB'09	146(2)(3)	152(3)(3)	157(3)(3)	155(2)(3)	170(4)(3)	169(3)(3)
WB'06	151(3)(3)	-	-	-	176(3)(4)	175(2)(4)
BBCR	-	192(4)(7)	-	-	192(4)(7)	-

renormalized chiral susceptibility, renormalized chiral condensate Polyakov loop and strange quark number susceptibility

no change compare to our 2006 data (errors are reduced) note, that the experimental value of f_K decreased by 3% since 2006 Particle Data Group now gives $f_K=155.5(2)(8)(2)$ MeV (error 0.5%)

 r_0 is not directly measurable:

ETM:0.444(4) fm, QCDSF:0.467(6) fm,

HPQCD&UKQCD:0.469(7) fm, PACS-CS:0.492(6)(+7) fm

- the T>0 QCD transition is an analytic cross-over
- new (2009) results for the transition temperature
- three major improvements since 2006 a. at T=0 all simulations are done with physical quark masses b. to verify that the results are independent of the scale setting we use 5 experimentally well-known quantites: $f_K, f_\pi, m_{K^*}, m_{\Omega}, m_{\Phi}$ c. even smaller lattice spacings: N_t =12 (in one case N_t =16)
- all findings are in complete agreement with our 2006 results
- Particle Data Group reduced the experimental value of f_K : 3%
- discrepancy between Wuppertal-Budapest & 'hotQCD' results a, for the remnant of the deconfinement transition; about 20 MeV b. for the remnant of the chiral transition: about 35 MeV ⇒ finding the reason: task for the future
- Wilson fermions: theoretically cleaner option

Final result for the hadron spectrum

Summa

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675 analytic transition (cross-over) \Rightarrow it has no unique T_c : examples: melting of butter (not ice) & water-steam transition

above the critical point c_p and $d\rho/dT$ give different T_c s. QCD: chiral & quark number susceptibilities or Polyakov loop they result in different T_c values \Rightarrow physical difference