2+1 flavor QCD at high temperatures

- I Equation of State
- II Transition
- III Critical behavior ?!

Edwin Laermann for the RBC-Bielefeld – and hotQCD – Collaborations

I Equation of State

the equation of state is $\epsilon(p)$

equivalent to knowing pressure p(T) and energy density $\epsilon(T)$

 \Rightarrow entropy density $s = (\epsilon + p)/T$ and other quantities through thermodynamic relations

start from energy-momentum tensor $\frac{\Theta_{\mu}^{\mu}(T)}{T^4} = \frac{\epsilon - 3p}{T^4} = T \frac{d}{dT} (p/T^4)$ where $\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(T, V) - \lim_{T \to 0} \frac{1}{VT^3} \ln Z(T, V)$ T = 0 subtraction takes care of UV divergencies

now $Z(T, V; g, m_l, m_s) = Z(N_\tau, N_\sigma, a; \beta = 6/g^2, \hat{m}_l, \hat{m}_s) \to Z(N_\tau, N_\sigma, a; \beta, m_\pi, m_K)$ and tune bare lattice parameters \hat{m}_l, \hat{m}_s with β such that $m_{\pi,K} = \text{const} \Rightarrow \hat{m}_{l,s}(\beta), a(\beta)$

$$\Rightarrow \quad \underline{\text{central quantity}} \qquad \qquad \frac{\Theta_{\mu}^{\mu}(T)}{T^{4}} = -R_{\beta}(\beta)N_{\tau}^{4}\left(\left\langle\frac{d\bar{S}}{d\beta}\right\rangle_{T} - \left\langle\frac{d\bar{S}}{d\beta}\right\rangle_{T=0}\right)$$
with $R_{\beta}(\beta) = T\frac{d\beta}{dT} = -a\frac{d\beta}{da} \qquad (\text{non-perturbative}) \ \beta \text{ function}$

then $\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \int_{T_0}^T dT' \frac{1}{T'^5} \Theta^{\mu}_{\mu}(T')$

action $S = \beta S_G + 2 \hat{m}_l(\beta) \bar{\psi}_l \psi_l + \hat{m}_s(\beta) \bar{\psi}_s \psi_s + \beta$ independent

such that Θ^{μ}_{μ} consists of three pieces (asqtad slightly more complicated: needs $du_0/d\beta$)

$$\frac{\Theta_{G}^{\mu\mu}(T)}{T^{4}} = R_{\beta} N_{\tau}^{4} \Delta \langle \bar{S}_{G} \rangle \qquad \text{where } \Delta \langle \mathcal{O} \rangle = \langle \mathcal{O} \rangle_{T=0} - \langle \mathcal{O} \rangle_{T}$$

$$\frac{\Theta_{F}^{\mu\mu}(T)}{T^{4}} = -R_{\beta} R_{m} N_{\tau}^{4} \{ 2 \hat{m}_{l} \Delta \langle \bar{\psi} \psi \rangle_{l} + \hat{m}_{s} \Delta \langle \bar{\psi} \psi \rangle_{s} \}$$

$$\frac{\Theta_{h}^{\mu\mu}(T)}{T^{4}} = -R_{\beta} R_{h} N_{\tau}^{4} \hat{m}_{s} \Delta \langle \bar{\psi} \psi \rangle_{s}$$

need: non-perturbative β functions $R_{\beta}(\beta), R_m(\beta) = \frac{1}{\hat{m}_l(\beta)} \frac{d\hat{m}_l(\beta)}{d\beta}$

$$R_h(\beta) = \frac{1}{h(\beta)} \frac{dh(\beta)}{dh} = 0$$
 at $h(\beta) = \frac{\hat{m}_l}{\hat{m}_s} = \text{const}$

"action differences" $\Delta \bar{S}_G, \Delta \langle \bar{\psi} \psi \rangle_{l,s}$

Simulation parameters

- $N_F = 2 + 1$: two degenerate u/d quarks + strange quark
- RHMC algorithm
- lattice sizes T > 0: $N_{\sigma}/N_{\tau} = 4$ $N_{\tau} = 4, 6, 8$ for $m_l/m_s = 1/10$ $(m_{\pi} \simeq 220 \text{ MeV})$ $N_{\tau} = 8, 12$ for $m_l/m_s = 1/20$ $(m_{\pi} \simeq 150 \text{ MeV})$ each T > 0 run accompanied by T = 0 run, for subtractions, scales

$$T = 0$$
: $N_{\sigma}/N_{\tau} \le 1$ same N_{σ} as for $T > 0$

• statistics $\mathcal{O}(10k - 60k)$ for T > 0, each $(\beta, \hat{m}_l, \hat{m}_s)$ $\mathcal{O}(5k)$ for T = 0, each $(\beta, \hat{m}_l, \hat{m}_s)$

• actions p4fat3 on $N_{\tau} = 4, 6, 8$ asqtad on $N_{\tau} = 6, 8, 12$ ★ T = 0 scale taken from $\Upsilon 2S - 1S$ splitting [A. Gray et al.] via the heavy quark potential V(r)

Allton inspired parametrization with rational fct. in $\hat{a}(\beta) = R_{\beta}^{(2-loop)}(\beta)/R_{\beta}^{(2-loop)}(\beta = 3.4)$

$$\begin{aligned} \frac{a}{r_0} &= a_r R_{\beta}^{(2-loop)} \frac{1 + b_r \hat{a}^2 + c_r \hat{a}^4 + d_r \hat{a}^6}{1 + e_r \hat{a}^2 + f_r \hat{a}^4} \qquad \Rightarrow \quad R_{\beta} = \frac{r_0}{a} \left(\frac{dr_0/a}{d\beta}\right)^{-1} \\ \hat{m}_l &= a_m R_{\beta}^{(2-loop)} \left(\frac{12b_0}{\beta}\right)^{4/9} \frac{1 + b_m \hat{a}^2 + c_m \hat{a}^4 + d_m \hat{a}^6}{1 + e_m \hat{a}^2 + f_m \hat{a}^4 + g_m \hat{a}^6} \qquad \Rightarrow \quad R_m \end{aligned}$$

for asquad there is a general parametrization for a large set of T = 0 data

 \star except in the peak region, here differences dominantly due to fermionic part Θ_F

there: 15 %
$$\Theta_F$$
 contribution
 \Rightarrow 5 % overall
affected by R_m at low β
 \sim drops out in $\Theta_{F,l}/\Theta_{F,s}$
remaining differences due to
slight mismatch in m_s^{phys}

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.5

0.32 0.36 0.40 0.44 0.48 results $m_l = 0.1 \, m_s$ 8 Tr₀ (ε-3p)/T⁴ 7 low T region: 6 asqtad: $N_{\tau}=8$ all resonances $\leq 2.5 \text{ GeV}$ 5 p4: N_τ=8 4 all resonances $\leq 1.5 \text{ GeV}$ 3 2 model to compare with: T [MeV] hadron resonance gas (HRG) 0 130 140 150 160 170 180 190 200 $\left(\frac{\epsilon - 3p}{T^4}\right)_{low T} = \sum_{m_i \le m_{max}} \frac{d_i}{2\pi^2} \sum_{k=1}^{\infty} (\pm)^{k+1} \frac{1}{k} \left(\frac{m_i}{T}\right)^3 K_1(km_i/T)$

 \star non-negligible contribution of heavy resonances in HRG

 \star reducing discretization effects lowers the crossover temperature

- \star reducing discretization effects lowers the crossover temperature
- \star diminishing quark mass lowers the crossover temperature
- \star smaller quark masses are expected to raise $\epsilon-3p$ somewhat at low T

- \star reducing discretization effects lowers the crossover temperature
- \star diminishing quark mass lowers the crossover temperature
- \star smaller quark masses are expected to raise $\epsilon-3p$ somewhat at low T, but effect is small
- * reducing discretization effects from $N_{\tau} = 8 \rightarrow 12$ seems to raise $\epsilon 3p$, preliminary

1.2 1.4 1.6 1.8 0.6 0.8 Tr₀ s/s_{SB} 1 0.8 AdS/CFT p4: N_τ=8 ⊢ 0.6 6 asqtad: $N_{\tau}=8$ 0.4 6 perturbative, NLA 0.2 $O(g^6) EQCD$ T [MeV] 0 200 100 300 400 500 600 700 800 courtesy P.Petreczky $s/T^3 = (\epsilon + p)/T^4$

1

0.4

EQCD: 3d effective theory, with perturbative matching to 4d

Kajantie et al.; Laine, Schröder

also agreement with resummed pert. theory Blaizot et al.

$\mathbf{results}$

pressure and energy density

 \star good agreement between <code>asqtad</code> and <code>p4fat3</code> actions

- \star integration error: indicated by little bars to the right
- \star in comparison with **Stefan-Boltzmann**: 10 % below at 2 3 T_c
- \star quark mass effects negligible at high T

vertical lines denote $N_{\tau} = 8$ transition region 185 MeV < T < 195 MeV for $m_l = 0.1 m_s$

results

 $c_s^2 = \frac{p}{\epsilon} + \epsilon \frac{d(p/\epsilon)}{d\epsilon}$ speed of sound 0.35 0.30 g/g0.25 24 32^{3} 0.20 32³ 8(asqtad HRG 0.15 0.10 $m_l = 0.1 m_s$ 0.05 ϵ [GeV/fm³] 0.00 10 100 1000 1

★ good agreement between **asqtad** and **p4fat3** actions ★ softest point corresponds to $\epsilon \simeq 1 \text{ GeV/fm}^3$

II Transition

comparison with chiral condensate and Polyakov loop

- chiral condensate $\langle \bar{\psi}\psi \rangle$ true order parameter in the chiral limit $m_q \to 0$
- Polyakov limit $L \sim \exp(-F_q/T)$ true order parameter in the static quark limit $m_q \to \infty$

– both need renormalization

$$\Delta_{l,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{l,T} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,T}}{\langle \bar{\psi}\psi \rangle_{l,0} - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}$$

UV renormalization via normalization of static quark potential

subtracting power-law additive and cancelling multiplicative UV divergencies

significant changes in the same temperature range as EoS

going to $m_l = 0.05 m_s \iff m_\pi \simeq 150 \text{ MeV}$ $(N_\tau = 8, \text{ p4 action, asqtad } T = 0 \text{ running})$

strange quark number susceptibility

at low T: $\sim \exp(-m_K/T)$ not too sensitive to criticality

– as in EoS: overall shift by about -5 MeV due to smaller quark mass

going to $N_{\tau} = 12$ $(m_l = 0.05 m_s, \text{ asqtad action})$

more work under way,

so far, a transition temperature ≤ 170 MeV at physical π mass suggested

phase diagram of QCD at $\mu_q = 0$

• chiral symmetry of 2 flavor QCD is:

 $SU_L(2) \times SU_R(2) \simeq O(4)$

- hence, if m_s is large enough in 2+1 QCD expect universal behavior as of 3d O(4) spins in the vicinity of finite T chiral limit, $m_l \rightarrow 0$ [Pisarski, Wilczek, ...]
- so far no clear evidence from numerical simulations and there are caveats due to the fate of the $U_A(1)$ [long list of refs.]
- staggered fermions preserve a flavor non-diagonal U(1) part of chiral symmetry even at a > 0 \Rightarrow search for O(2) critical behavior in the vicinity of chiral limit also at a > 0

magnetic equation of state in O(N) spin models

magnetization $M = h^{1/\delta} f_G(z)$ where $z = t/h^{1/\beta\delta}$ $f_G(z)$ universal scaling function $t = \frac{1}{t_0} \frac{T - T_c}{T_c}$ reduced temperature $h = \frac{H}{h_0}$ external field β, δ universal critical exponents t_0, h_0 non-universal normalizations $f_G(z) \ \beta, \delta$ known to high precision. Engels et a

 $f_G(z), \beta, \delta$ known to high precision Engels et al., condensed matter literature

in the limit $z \to -\infty$, corresponding to $h \to 0$ and t < 0

 $f_G(z) \to (-z)^{\beta} \{1 + \tilde{c}_2(-z)^{-\beta\delta/2}\}$ corresponding to $M(t,h) \to M(t,0) + c_2(t)\sqrt{h}$ Goldstone effect

 m_l/m_s

 m_{π}

- fit to the O(2) scaling function $f_G(z)$, 3 fit parameters: $t_0, h_0, T_c(m_l = 0)$

consistency with O(N) scaling behavior at small quark masses

comparison to staggered data in the standard discretization

MILC, Pisa data

۲

4.0

scaling violations

- are clearly visible in the region of small |z| i.e. large m_l and small t, and can be parametrized as

 $M(t,h) = h^{1/\delta} f_G(t/h^{1/\beta\delta}) + a_t th + b_1 h + b_3 h^3 + b_5 h^5$

since the scale parameters t_0, h_0 have been determined above

- for the linear term: $b_1=0~~{\rm for}~~M~~{\rm (subtracted condensate)}$ $b_1\neq 0~~{\rm for}~~M_b$
- -> curves and chiral extrapolation for M(T)
- \star scaling violations are small for physical values of the quark mass

- Equation of State
 - extending analysis to $m_{\pi} \simeq 150$ MeV on $N_{\tau} = 12$ lattices
 - at low T: reducing lattice spacing and quark mass leads to approaching HRG
 - at high T: making contact with (resummed) perturbation theory and EQCD
- Transition
 - reducing a and m_l affects the studied observables in the same way
 - suggest a continuum extrapolated value of $T_c \lesssim 170$ MeV preliminary
- critical behavior ?
 - finally, strong indications for O(N) scaling of the magnetic equation of state !
 - although at large lattice spacing, hints at physical point possibly being in the attraction basin of a second order chiral phase transition
 - optimistic signal for further studies of the QCD phase diagram