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Hadron Spectrum Collaboration - physics projects

Map the light hadron spectrum

Isovector mesons including hybrids and exotics.
Isoscalar mesons and the glueballs.
Nucleon spectrum and excitations.
Mesons and baryons with strange quarks.
Charmonium.

Make progress towards computing widths of resonances

First step - multi-meson states

Compute radiative transitions for GlueX photoproduction
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HadSpec lattice ensembles

Quark field dynamics included in the importance sampling

2+1 dynamical flavours

Anisotropic lattice to enhance temporal resolution.
Non-perturbatively tuned to as/at = 3.5.

Tree-level Symanzik-improved gauge action

Sheikholeslami-Wohlert quark action

Spatial stout-link background for quark propagation

Volume atm
0
s atm

0
l mπ/mρ

163 × 128 −0.0742 −0.0742 0.6880(18)
163 × 128 −0.0742 −0.0808 0.571(5)
163 × 128 −0.0742 −0.0830 0.490(6)
243 × 128 −0.0742 −0.0840 0.447(4)
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Hadron spectroscopy (1)

Masses of (colourless) QCD bound-states can be computed by
measuring two-point functions. The Euclidean two-point function is

C (t) = 〈0|Φ(t)Φ†(0)|0〉

The time-dependence of the operator, Φ is given by
Φ(t) = eHtΦe−Ht , so

C (t) = 〈Φ|e−Ht |Φ〉

inserting a complete set of energy eigenstates gives

C (t) =
∞∑

k=0

〈Φ|e−Ht |k〉〈k |Φ〉 =
∞∑

k=0

|〈Φ|k〉|2e−Ek t

Then limt→∞ C (t) = Ze−E0t

If the large-time exponential fall-off of the correlation function can be
observed, the energy of the state can be measured.
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Hadron spectroscopy (2)

The energies of excited states can be computed reliably too.

Tracking sub-leading exponential fall-off works sometimes but a more
efficient method is to use a matrix of correlators. With a set of N
operators {Φ1,Φ2, . . . } (with the same quantum numbers), compute
all elements of

Cij(t) = 〈0|Φi (t)Φ†j (0)|0〉

Now solve the generalised eigenvalue problem

C (t1)v = λC (t0)v

for different t0 and t1. [M. Lüscher + U. Wolff, C. Michael]

The method constructs an optimal linear combination to form a
ground-state, and then constructs a set of operators that are
orthogonal to it.

The second eigenvector can not have overlap with the ground-state at
large t, and will fall to the first excited energy.
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Spin on the lattice

Eigenstates of the hamiltonian simultaneously form irreducible
representations of SO(3), the rotation group. Spin is a good quantum
number.

The lattice hamiltonian does not have SO(3) symmetry. It is
symmetric under the discrete sub-group of rotations of the cube,
Oh. This group has 48 elements (once parity is included) and ten
irreducible representations.

The eigenstates of the lattice hamiltonian therefore have a good
“quantum letter”; Au,g

1 ,Au,g
2 ,Eu,g ,T u,g

1 ,T u,g
2

Can we deduce the continuum spin of a state? With some caveats,
yes.

A pattern of degeneracies must be found and matched against the
representations of Oh subduced from SO(3).
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Isoscalar meson correlation functions

If we are interested in measuring isoscalar meson masses, extra
diagrams must be evaluated, since four-quark diagrams become
relevant. The Wick contraction yields extra terms, since

〈ψi ψ̄jψk ψ̄l〉 = M−1
ij M−1

kl −M−1
il M−1

jk

Now
〈0|ΦI=0(t)Φ†I=0(0)|0〉 =

〈0|ΦI=1(t)Φ†I=1(0)|0〉 − 〈0|Tr M−1ΓUC(t)Tr M−1ΓUC(0)|0〉
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The need for better (statistical) precision

Excited states fall faster than ground-states.

Gluonic excitations (in hybrids, isoscalar states, glueballs) are
intrinsically noisy.

Maiani-Testa - no direct access to decay matrix elements from
Euclidean field theory but decay widths can be inferred indirectly from
the dependence of the energy spectrum on the lattice volume
(Lüscher).

Want to get as much information about quark propagation as possible
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Smearing - an essential ingredient for precision

To build an operator that projects effectively onto a low-lying
hadronic state need to use smearing

Instead of the creation operator being a direct function applied to the
fields in the lagrangian first smooth out the UV modes which
contribute little to the IR dynamics directly.

A popular gauge-covariant smearing algorithm; Jacobi/Wuppertal
smearing: Apply the linear operator

�J = exp(σ∆2)

∆2 is a lattice representation of the 3-dimensional gauge-covariant
laplace operator on the source time-slice

∆2
x ,y = 6δx ,y −

3∑
i=1

Ui (x)δx+ı̂,y + U†i (x − ı̂)δx−ı̂,y

Correlation functions look like Tr �JM
−1�JM

−1�J . . .
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Redefine smearing

After tuning the free parameter σ it turns out �J is a very low rank
operator.

The choice of smearing operator is arbitrary, provided
1 It is a scalar operator
2 It is gauge covariant
3 It is a function of only field on time-slice t (or perhaps a few nearest

neighbours?)

Redefine smearing to be a projection operator onto a low-dimensional
space of fields:

� =
M∑

k=1

v (k) ⊗ v (k)∗

This is distillation.

How to choose v? One simple choice is to use the lowest M
eigenvectors of ∆2
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Distilled correlation functions

Why is this helpful? Look at correlation functions such as an
isovector meson two-point function

CAB(t1, t0) = Tr �(t1)Γ1�(t1)M−1
u (t1, t0)�(t0)Γ0�(t0)M−1

d (t0, t1)

Γ1,2 are creation operators that make mesons with appropriate
quantum numbers

Inserting the definition of the distillation operator, the correlation
function becomes a trace over a product of rank-M matrices.

CAB(t1, t0) = tr Φ1(t1)τ(t1, t0)Φ0(t0)τ(t0, t1)

with

Φ
(i ,j)
a = v (i)∗Γav

(j) and τ
(i ,j)
a = v (i)∗(t1)M−1(t1, t0)v (j)(t0)
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The lowest eigenvector of the laplace operator

Localised mode - size is confinement scale
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Distribution of distillation operator

0 1 2 3 4 5 6 7 8 9 10

r/as

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ψ
(r

)
N=64
N=32
N=8

Distillation operator is rotationally symmetric and gaussian
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How big should the distillation space be?

20 30 40 50 60

0.15

0.2

0.25

0.3

0.35

0.4

163 spatial volume. Volume approx 2fm.

Still big, but feasible here - now in production

Volume dependence a problem: Cost ∝ V 2
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Continuum spin identification
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Take continuum operator basis and then subduce, using a lattice
representation of the derivative.

Overlap of operator onto state - should be the same for all
polarisations

Renormalisation - mild because fields are smeared.

It seems to work! Test with well-established cases

First identification of spin-4 state
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Isovector meson spectrum: PC=−+ and −−
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Isovector meson spectrum: PC=+− and ++

0.6

0.8

1.0

1.2

1.4

1.6

(5) (22) (14) (9) (5) (13) (22) (22) (17) (5)

Mike Peardon (TCD) Lattice spectroscopy FAIR+LQCD 19 / 23



Isoscalar A−+
1 correlation function
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atE = 0.2361(25)

Small volume (123)

Fit requires a constant: C (t) = A0 + A1e
−A2t - volume artefact?

Precise result - atE determined to 1% instead of 10%
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ππI=0 - ππI=0 correlation function (disconnected part)

Initial tests on small lattices
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Glueball - ππ correlation function

Initial test on small lattices
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Conclusions

Hadron Spectrum Collaboration making progress determining the
spectrum of excited isovector mesons using anisotropic lattice
combined with new measurement techniques.

Recent progress - developed a new algorithm (distillation) for quark
smearing that facilitates precise spectroscopy measurements.

Spin identification seems to work. Identified three exotic hybrids and
three spin-4 states.

Distillation enables isoscalar correlation function measurements

Problem: V 2 scaling - solutions under investigation

Next step - multi-hadron operators to investigate resonances then
analyse data from multiple volumes
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