Hadronic Correlation and Spectral Functions at Finite Temperature

Olaf Kaczmarek

FAIR Lattice QCD Days GSI Darmstadt, November 23, 2009

Hard Probes in Heavy Ion Collisions - Dileptons

Dileptonrate directly related to vector spectral function:

$$\frac{\mathrm{d}W}{\mathrm{d}\omega\mathrm{d}^3p} = \frac{5\alpha^2}{27\pi^2} \frac{1}{\omega^2(e^{\omega/T}-1)} \sigma_V(\omega,\vec{p},T)$$

Hard Probes in Heavy Ion Collisions – RHIC results

pp-data well understood by hadronic cocktail low invariant mass region <150 MeV similar in Au-Au large enhancement between 150-750 MeV indications for thermal effects!? Also at higher m_{ee}?

Need to understand the contribution from QGP! \rightarrow spectral functions from lattice QCD

Hard Probes in Heavy Ion Collisions - Photons

Photonrate directly related to vector spectral function (at finite momentum):

$$\omega \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^4 x \mathrm{d}^3 q} = \frac{5\alpha}{6\pi^2} \frac{1}{e^{\omega/T} - 1} \sigma_V(\omega = |\vec{p}|, T)$$

The small ω limit of σ_V is related to transport coefficients (Kubo-Formulas)

Light quark sector \rightarrow **electrical conductivity**:

$$\sigma_{el} = \lim_{\omega \to 0} \frac{\sigma_V^{ii}(\omega, \vec{p} = 0, T)}{6\omega}$$

Heavy quark sector \rightarrow heavy quark diffusion constant:

$$D = \frac{1}{3\chi^{00}} \lim_{\omega \to 0} \frac{\sigma_V^{ii}(\omega, \vec{p} = 0, T)}{\omega}$$

Free (non-interacting) spectral function [Karsch et al. 03, Aarts et al. 05]

Hadronic correlators for light quarks (m_q=0) Screening masses in the thermodynamic and continuum limit **Temporal correlators vs. free correlators Spectral functions and Dilepton rates** Charmonium hadronic correlators (m_a=m_c) Screening Masses below and above T_c **Temporal correlators vs. free correlators** Spectral functions below and above T_c **Temporal correlators vs. reconstructed correlators** Zero mode contributions

Hadronic correlators – Lattice setup

Thermal hadronic correlation functions

$$J_H = \bar{q}(\tau, \vec{x}) \Gamma_H q(\tau, \vec{x})$$

$$G_H(\tau, T, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}\vec{x}} \langle J_H(0, 0) J_H^{\dagger}(\tau, \vec{x}) \rangle$$

O(a)-improved Clover improved fermionic action

on large quenched lattice configurations up to $128^3 \times 16/32/48$

includes all the relevant physics (in the quenched limit)

how to extract it?

directly from the correlators?

spectral functions using MEM?

splitting below T_c due to chiral and axial U(1) symmetry breaking

degenerate states at $1.5 T_c$ symmetry restauration above T_c deviations at small τ due to different cut-off effects

splitting below T_c due to chiral and axial U(1) symmetry breaking

degenerate states at $1.5 T_c$ symmetry restauration above T_c deviations at small τ due to different cut-off effects

use Spatial Correlators

$$G_H(z,T,\vec{p}_\perp) = \sum_{\tau,\vec{x}_\perp} e^{-i\vec{p}_\perp\vec{x}_\perp} \langle J_H(0,0)J_H^{\dagger}(\tau,\vec{x})\rangle$$

correlation function depends on the same spectral density,

but the relation is more involved

$$G_H(z) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}p_z}{2\pi} e^{ip_z z} \int_{-\infty}^{+\infty} \mathrm{d}p_0 \frac{\sigma_H(p_0, \vec{0}_\perp, p_z)}{p_0} \quad \overrightarrow{z \to \infty} \text{ Ampl.} \times \exp(-m_{\text{screen}} z)$$

however, $m_{\text{screen}}(T) \neq m_{pole}(T)$ in general :

look for zeros of $G^{-1}(p) = p_0^2 + \vec{p}^2 + m_0^2 + \Pi(p_0, \vec{p}, T)$

$$\vec{p} = 0: \qquad -p_0^2 = m_0^2 + \Pi(p_0, \vec{0}, T) = (m_{pole}(T))^2$$
$$p_0 = 0: \qquad -\vec{p}^2 = m_0^2 + \Pi(0, \vec{p}, T) = (m_{\text{screen}}(T))^2$$
$$\implies m_{screen}(T) = \frac{m_{pole}(T)}{A(T)}$$

Light Quark Screening Masses – Thermodynamic Limit, V $ightarrow\infty$

large collection of lattices ranging from $16^3 \times 8$ to $128^3 \times 16$ allowing for thermodynamic limit V $\rightarrow \infty$ at N_t=8,12 and 16

Light Quark Screening Masses – Thermodynamic Limit, V $\rightarrow \infty$

large collection of lattices ranging from $16^3 \times 8$ to $128^3 \times 16$ allowing for thermodynamic limit V $\rightarrow\infty$ at N_t=8,12 and 16

N_t/N_s

0.5

Continuum Limit

lattice spacing $a \rightarrow 0$

Non-perturbatively improved action

 \Rightarrow discretization errors O(a²)

$$T = \infty : \quad \frac{m^z(a)}{T} = \frac{m^z}{T} - \lambda \left(\frac{1}{N_\tau}\right)^2$$

Thermodynamic and Continuum Limit:

weak temperature dependence below T_c data still below free limit ($2\pi T$) at $3T_c$, vector closer to free case perturbative limit reached from above [Laine, Vepsäläinen] \rightarrow need higher temperatures to verify this

Light Quark Correlators – Temporal direction

comparison with free (non-interacting) high temperature lattice correlator

vector and axial-vector close to free case

cut-off effects are well described by free lattice correlator

this explains the difference at small au

in the following only vector and pseudo-scalar are discussed

Light Quark Correlators – Temporal direction

comparison with free (non-interacting) high temperature lattice correlator

vector and axial-vector close to free case

cut-off effects are well described by free lattice correlator

this explains the difference at small au

in the following only vector and pseudo-scalar are discussed

still strong correlations in scalar and pseudo-scalar channel!

Light Quark Correlators vs Free Correlators

comparison with free (non-interacting) high temperature lattice correlator

vector and axial-vector close to free case

still strong correlations in scalar and pseudo-scalar channel

Light Quark Correlators vs Free Correlators

comparison with free (non-interacting) high temperature lattice correlator

vector and axial-vector close to free case

still strong correlations in scalar and pseudo-scalar channel

first 4-5 distances still dominated by cut-off effects

Light Quark Correlators vs Free Correlators

comparison with free (non-interacting) high temperature lattice correlator

vector and axial-vector close to free case

still strong correlations in scalar and pseudo-scalar channel

first 5 points still dominated by cut-off effects!

Nt=32 and 48 needed to extract continuum physics!

Spectral Functions – Maximum Entropy Method

How to obtain continuous spectral function $\sigma(\omega, T)$

from discrete (and small) number of correlators?

$$G(\tau, T) = \int_{0}^{\infty} d\omega K(\tau, \omega, T) \sigma(\omega, T)$$
$$K(\tau, \omega, T) = \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$

Best method on the market: Maximum Entropy Method (MEM)

based on Bayesian theorem [Asakawa et al. 01] \rightarrow most probable spectral function properly renormalized correlators as input

non-perturbative renormalization constants for vector [Lüscher et al. 1997] TI perturbative renormalization constants for pseudo-scalar prior knowledge needed as input \rightarrow default model m(ω) result should be independent of default model \leftarrow usually not the case

MEM – Free spectral function

Free (non-interacting) spectral function [Karsch et al. 03, Aarts et al. 05]

$$\sigma_H = \frac{N_c}{8\pi^2} \Theta(\omega^2 - 4m^2) \ \omega^2 \tanh(\frac{\omega}{4T})$$
$$\times \sqrt{1 - (\frac{2m}{\omega})^2} \left[a_H + (\frac{2m}{\omega})^2 \ b_H \right]$$
$$+ \frac{N_c}{3} \ \frac{T^2}{2} \ f_H \ \omega \delta(\omega)$$

MEM – Free spectral function

Free (non-interacting) spectral function [Karsch et al. 03, Aarts et al. 05]

$$\sigma_H = \frac{N_c}{8\pi^2} \Theta(\omega^2 - 4m^2) \ \omega^2 \tanh(\frac{\omega}{4T})$$
$$\times \sqrt{1 - (\frac{2m}{\omega})^2} \left[a_H + (\frac{2m}{\omega})^2 \ b_H \right]$$
$$+ \frac{N_c}{3} \ \frac{T^2}{2} \ f_H \ \omega\delta(\omega)$$

Lattice cut-off effects

$$\omega_{max} = 2\log(7 + ma)$$

MEM – Free spectral function

Free (non-interacting) spectral function [Karsch et al. 03, Aarts et al. 05]

$$\sigma_H = \frac{N_c}{8\pi^2} \Theta(\omega^2 - 4m^2) \ \omega^2 \tanh(\frac{\omega}{4T})$$
$$\times \sqrt{1 - (\frac{2m}{\omega})^2} \left[a_H + (\frac{2m}{\omega})^2 \ b_H \right]$$
$$+ \frac{N_c}{3} \ \frac{T^2}{2} \ f_H \ \omega\delta(\omega)$$

zero mode contribution at $\omega \simeq 0$ [Umeda 07]

with interactions:

$$\delta(\omega) \to \frac{1}{\pi} \frac{\eta}{\omega^2 + \eta^2}$$

[Petreczky+Teaney 06 Aarts et al. 05]

Spectral Function – Light Quark Sector

large ω behaviour well described by free lattice SPF

cut-Off effects are under control and well separated form physical interesting region

Vector SPF close to free case except at small ω

still large correlations in the Pseudoscalar sector

small ω region accessible \rightarrow hope to extract transport properties \rightarrow higher statistics needed

Spectral Function – Light Quark Sector

large ω behaviour well described by free lattice SPF

cut-Off effects are under control and well separated form physical interesting region

Vector SPF close to free case except at small ω

still large correlations in the Pseudoscalar sector

small ω region accessible \rightarrow hope to extract transport properties \rightarrow higher statistics needed

Dilepton Rates

Dileptonrate directly related to vector spectral function:

Born rate approached at large ω/T

consistent with HTL calculations at intermediate ω/T better behaved $\sim 1/\omega^2$ at small ω/T [Moore et al., Teaney, ...] higher statistics needed to resolve details at small ω/T consistent behavior at both lattice spacings \rightarrow continuum physics

Charmonium Correlators – Screening Masses

screening masses at 1.50 T_c already close to the free case

$$m_{free}^{scr}(T) = 2\sqrt{(\pi T)^2 + m_c^2}.$$

does this tell us anything about dissociation?

need to understand the momentum dependence of $G_{H}(\tau,T,p)$ and $\sigma(\omega,T,p)$ in detail

thermodynamic and continuum limit not performed yet

Charmonium Correlators – Temporal Correlators

non-degenerate states still at 1.50 T_c

(almost) close to free correlators at (very) small separations

largest distance 0.25 fm due to compact temporal direction

only small distance regime (0.1-0.25 fm) relevant

for thermal effects

for bound state effects

Charmonium Correlators vs Free Correlators

non-degenerate states still at 1.50 T_c

(almost) close to free correlators at (very) small separations

largest distance 0.25 fm due to compact temporal direction

only small distance regime relevant

for thermal effects

for bound state effects

MEM – Spectral function below T_c

 N_{σ} =128 and N_{τ} =64 (a⁻¹ \approx 13 GeV) \rightarrow cut-off effects well separated

Pronounced ground state peak close to J/ψ mass

no zero mode contributions observed below T_c in all channels

MEM – Spectral function below T_c

 N_{σ} =128 and N_{τ} =64 (a⁻¹ \approx 13 GeV) \rightarrow cut-off effects well separated

pronounced ground state peak close to J/ψ mass

no zero mode contributions observed below T_c in all channels

first peak independent of default model

MEM – Spectral function above T_c

 N_{σ} =128 and N_{τ} =48 (a⁻¹ \approx 19 GeV) \rightarrow cut-off effects well separated

small ω region accessible \rightarrow hope to extract transport properties

default model dependence only in small ω region \rightarrow higher statistics needed

no default model dependence in the intermediate ω region

no zero-mode contribution in pseudo-scalar channel observed

no pronounced peak \rightarrow bound states melted? / threshold enhancement?

Charmonium Correlators – Zero Mode Contributions

$$G_{rec}(\tau, T) = \int \sigma_0(\omega, 0.75T_c) K(\omega, \tau, T)$$

$$G_{rec}^{low}(\tau, T) = \int_{0}^{2m_c} \sigma_T(\omega, T) K(\omega, \tau, T)$$

$$G_{\mu\mu}(\tau, T) = G_{ii}(\tau, T) + G_{44}(\tau, T)$$

- main T-effect due to zero-mode contribution
- well described by small ω -part of $\sigma_T(\omega, T)$
- smaller than $G_{00}(\tau,T)=\chi(T)T$
- no zero-mode contribution in PS-channel

(similar to discussions by Umeda, Petreczky)

Charmonium Correlators – Zero Mode Contributions

$$\begin{split} G_{rec}(\tau,T) &= \int \sigma_0(\omega,0.75T_c)K(\omega,\tau,T) \\ G_{rec}^{low}(\tau,T) &= \int_{0}^{2m_c} \sigma_T(\omega,T)K(\omega,\tau,T) \end{split}$$

- larger zero-mode contribution in S-wave
- larger T-effect in the S-wave states

systematic uncertainties in reconstruction and low- ω part of spetral function high quality data and small lattice spacing + large momenta (volume) needed

Hadronic correlators for light quarks (m_q=0)

 $\begin{array}{ll} Thermodynamic and Continuum Limit of screening masses!\\ Spectral functions \rightarrow Dilepton rates, Transport coefficients?\\ Momentum dependence needs to be analyzed \rightarrow Photonrates\\ Comparison with HTL calculations and experiment\\ \hline Charmonium hadronic correlators (m_a=m_c)\end{array}$

What can we learn from Hadronic correlators on Dissociation?
Momentum dependence vs. Spatial correlators/screening masses?
Spectral functions → Dilepton rates, Transport coefficients?
Momentum dependence needs to be analyzed → Photonrates
Comparison with HTL/NRQCD calculations and experiment

Many Thanks to

HengTong Ding Anthony Francis Helmut Satz + RBC-Bielefeld