Charmonium Spectroscopy

Gunnar Bali

Universität Regensburg

FAIR Lattice QCD Days

GSI, 23 November 2009

TOP Green500 List - November 2009

QPACE

Outok Links Ranks 1: 100 Ranks 201: 300 Ranks 201: 300 Ranks 201: 400 Ranks 401: 400 Door ridsde Door ridsde Door ridsde Door ridsde Door Ranks Stadistis Stadistis Do Courty Do Courty

Listed below are the TOP Green 500's Top 10 most energy-afficient supercomputers in the world as of November 2009.

Green 500	MFLOPS/W	Site*	Computer*	Total	TO P500
Hank				hower (km)	Hauk.
1	722.98	Forschungszen (num Jaelich (FZJ)	QPACE SFB TRC#ster, PowerXCel 81.3.2 GHz, 3D-Tows	59.49	110
1	722.98	U⊧NeslaeiRege≉st⊭g	QPACE SFB TRC#ster, PowerXCel 8L3 2 GHr, 3D-Tows	59.49	111
1	722.98	Universitae) Will ppiental	QPACE SFB TRClaster, PowerXCel 81, 3 2 GHz, 3D-Tows	59.49	112
4	458-33	DOEINN SAILANL	BlateCenter08221.821 Clister, Powe00Cel8132 Giz I Opteron DC 1.8 GHz, Millitant	276	29
4	458.33	IBM Porghteepsie Berch marting Center	BlateCenter 08221 821 Clister, Powe00Cel 8132 Giz I Opteron DC 1 & GHz, Millitant	138	78
6	444.25	DOEINN SAILANL	BlateCenter Q8221 821 Cluster, PowerXCel 8132 Ghz I Opteron DC 1 & GHz, Votate In Initiant	2345.5	2
7	428.91	National Astronomical Otservatory of Japan	GRAPE-DR accelerator Clester, Inflidt and	51.2	445
8	379.24	National SuperComputer Center in Tile (in NUDT	NU DT TH-1 Classics, X ₀₀₁ E5540/E5450, AT I Rafeon HD 4870 2, In Pelband	1484.8	5
9	378-77	King Abé a Babilin Mensily of Science and Technology	Bive GevelP Solution	504	18
9	378.77	EDF R&D	Bl≉e Ge⊧elP Soletion	252	49
9	378-77	Ecole Polytech ≋kj⊪e Feterale te La≈sar≉e	Blie Gerel P Solelion	126	99
9	378.77	IBM - Roch ester	Bive GevelP Sole lion	126	100
9	378.77	IBM Thomas J. Watson Research Cenjer	Bive GevelP Solution	126	101
9	378.77	Max-Planck-Geselsch aft MP HPP	Bire GereiP Solrion	126	102

SUPERMICR Proud Sponsor of The G

- The new Charmonia
- Lattice spectroscopy
- Fine structure
- Disconnected quark lines 1: $c\bar{c} \leftrightarrow \bar{q}q$
- Disconnected quark lines 2: $c\bar{c} \leftrightarrow c\bar{q}q\bar{c}$
- Outlook

Own charmonium results from GB & Christian Ehmann, arXiv:0710.0256, arXiv:0903.2947, arXiv:0911.1238

Possible QCD phase diagram: diquarks ?

5 / 26

Input:
$$\mathcal{L}_{QCD} = -\frac{1}{16\pi\alpha_L}FF + \bar{q}_f(\not\!\!D + m_f)q_f$$

$$m_N^{\text{latt}} = m_N^{\text{phys}} \longrightarrow a$$

 $m_\pi^{\text{latt}}/m_N^{\text{latt}} = m_\pi^{\text{phys}}/m_N^{\text{phys}} \longrightarrow m_u \approx m_d$

. . .

Output: hadron masses, matrix elements, decay constants, etc...

Extrapolations:

- (1) $a \rightarrow 0$: functional form known.
- **2** $L \rightarrow \infty$: harmless but often computationally expensive.
- 3 $m_q^{\text{latt}} \rightarrow m_q^{\text{phys}}$: chiral perturbation theory (χPT) but m_q^{latt} must be sufficiently small to start with.

 $(m_{\rm PS}^{\sf latt}=m_\pi^{\sf phys}$ has only very recently been realized.)

Quenched Lattice: glueballs, charmonia and hybrids

(No "disconnected diagrams" and no sea quarks \rightarrow no mixing $G, c\bar{c}, c\bar{q}q\bar{c}$, no decay !)

 $a^{-1} pprox 1.1, 1.6, 2.3 \, {
m GeV}$

Outline

The new charmonia

Lattice spectroscopy

Fine structur

ucture

Disco

Outlook

	name	O _h repr.	JPC	state	operator
	<i>a</i> ₀	A_1	0++	χ_{c0}	1
	π	A_1	0-+	η_c	γ_5
rators	ρ	T_1	1	J/ψ	γ_i
alois	<i>a</i> 1	T_1	1++	χ_{c1}	$\gamma_5\gamma_i$
	b_1	T_1	1^{+-}	h _c	$\gamma_i \gamma_j$
	$\pi \times \nabla$	T_1	1^{+-}	h _c	$\gamma_5 \nabla_i$
- 0 4	$a_0 \times \nabla$	T_1	1	J/ψ	∇_i
= 0, 4, · · ·	$a'_0 \times \nabla$	I_1	1-+	exotic	$\gamma_4 \nabla_i$
= 3.6	$(\rho \times \nabla)_{A_1}$	A_1	0++	χ_{c0}	$\gamma_i \nabla_i$
0,0,	$(\rho \times \nabla)_{T_1}$	$\frac{I_1}{T}$	1++	χ_{c1}	$\epsilon_{ijk}\gamma_j \nabla_k$
= 2, 4, · · ·	$(\rho \times \nabla)_{T_2}$	12	2++	χ_{c2}	$s_{ijk}\gamma_j \nabla_k$
1 0 4	$(a_1 \times \nabla)_{A_1}$	A_1	0	exotic	$s_{ijk}\gamma_j abla_k$
$= 1, 3, 4, \cdots$	$(a_1 \times \nabla)_{T_2}$	I_2	2		$\gamma_5 s_{ijk} \gamma_j \nabla_k$
- 2 3 4	$(b_1 \times \nabla)_{T_1}$	$\frac{I_1}{T}$	1^{-+}	exotic	$\gamma_4\gamma_5\epsilon_{ijk}\gamma_j\nabla_k$
- 2, 3, 4,	$a'_0 \times D$	12	2^{+-}	exotic	$\gamma_4 D_i$
	$(a_1 \times D)_{A_2}$	A_2	3++		$\gamma_5 \gamma_i D_i$
	$(a_1 \times D)_{T_1}$	$\frac{I_1}{T}$	1^{++}	χ_{c1}	$\gamma_5 s_{ijk} \gamma_j D_k$
	$(a_1 \times D)_{T_2}$	12	2++		$\gamma_5 \epsilon_{ijk} \gamma_j D_k$
	$(b_1 \times D)_{A_2}$	A_2	3		$\gamma_4\gamma_5\gamma_iD_i$
		•••	• • •	•••	• • •

Lattice operators

A_1	\rightarrow	$J = 0, 4, \cdots$
A_2	\rightarrow	$J = 3, 6, \cdots$
Ε	\rightarrow	$J = 2, 4, \cdots$
T_1	\rightarrow	$J=1,3,4,\cdots$
T_2	\rightarrow	$J=2,3,4,\cdots$

Outline	The new charmonia	Lattice spectroscopy	Fine structure	Disco 1	Disco 2	Outlook

J-assignment for PC = -- J Dudek et al.

Wavefunctions after variational optimization (Coulomb gauge). CE, GB

Outlook

NRQCD:
$$\Delta M = \frac{1}{6m_c^2} \langle \psi | V_4 | \psi \rangle + \cdots$$

Leading order perturbation theory: $V_4(r) = 8\pi C_F \alpha_s \delta^3(r)$.

ΔM	scale from $r_0 = 0.5$ fm	scale from $1\overline{P} - 1\overline{S}$
Columbia	72(2) MeV	83(??) MeV
CP-PACS	73(1)(4) MeV	85(4)(6) MeV
QCD-TARO	77(2)(6) MeV	89(??) MeV
χ QCD	88(4) MeV	121(6) MeV
JLAB	97(6) MeV	???

JLAB (Dudek et al): $m_c \approx 5\%$ too small !

 χ QCD (Tamhankar et al) + JLAB: only one lattice spacing *a*. χ QCD: *La* < 0.9 fm $\rightarrow 1\overline{P} - 1\overline{S}$ underestimated ?

Y Namekawa et al (PACS-CS, arXiv:0810.2364)

 $a^{-1} \approx 2.2$ GeV from m_{Ω} , 310 MeV $> m_{\mathrm{PS}} \ge 165$ MeV, $Na \approx 2.9$ fm.

Disconnected quark lines? ($n_f = 0$: P de Forcrand et al (QCD-TARO 04))

What about mixing with other I = 0 states?

C Ehmann, GB: $\eta_c \leftrightarrow \eta$ mixing $(n_f = 2)$:

Mixing vs. no mixing:

Outline	The new charmonia	Lattice spectroscopy	Fine structure	Disco 1	Disco 2	Outlook

Two state potentials GB, H Neff, T Düssel, T Lippert, Z Prkacin, K Schilling

Outline	The new charmonia	Lattice spectroscopy	Fine structure	Disco 1	Disco 2	Outlook
Two s Eigens	tate system: states:					
	1 angle	$= \cos \theta \overline{Q} Q$	$ \rangle + \sin \theta B$	$\overline{B}\rangle$		

 $= -\sin\theta |\overline{Q}Q\rangle + \cos\theta |B\overline{B}\rangle$

with $B = \overline{Q}q$.

 $|2\rangle$

Correlation matrix:

 Outline
 The new charmonia
 Lattice spectroscopy
 Fine structure
 Disco 1
 Disco 2
 Outlook

 Coupled channel potential model for threshold effects ?

Many channels $(D\overline{D}, D^*\overline{D}, D_s\overline{D}_s, D^*\overline{D}^*, \cdots) \Rightarrow$ many parameters!

"Direct" calculation of the spectrum ?

- We have to be able to resolve radial excitations!
- (remember e.g. the very dense 1^{--} sector.)

Required: large basis of test wavefunctions including $c\bar{c}$, $c\bar{q}q\bar{c}$ and $cg\bar{c}$ operators and good statistics.

Outline	The new charmonia	Lattice spectroscopy	Fine structure	Disco 1	Disco 2	Outlook

$c\overline{c} \leftrightarrow \overline{D}D$ mixing (for $n_f = 2$):

$n_f = 2$, $a^{-1} \approx 2.59$ GeV, $La \approx 1.83$ fm, $m_{\rm PS} \approx 290$ MeV

Eigenvector components of the J/ψ . Components of the $D_1\overline{D}$.

	Outline	The new charmonia	Lattice spectroscopy	Fine structure	Disco 1	Disco 2	Outlook
	Outlook	K					
1							

- \exists first simulations near the physical m_{π} at $a^{-1} \approx 2$ GeV.
- \exists first precision calculations of annihilation and mixing diagrams.
- Study of $c\bar{c} \leftrightarrow c\bar{q}q\bar{c}$ is well on its way.
- The continuum limit is important, in particular for the fine structure.
- There will be a lot of progress in charmonium spectroscopy below and above decay thresholds in the next years.
- Forces between pairs of static-light mesons for different S and I are being studied, to qualitatively understand 4-quark binding (X(3872), Z⁺(4430) etc.).