The QCD phase transition probed by fermionic boundary conditions

Falk Bruckmann (Universität Regensburg)

FAIR Lattice QCD Days, Nov. 2009

with E. Bilgici, C. Hagen, C. Gattringer, J. Danzer, E.-M. Ilgenfritz, A. Maas

0906.3957, Phys. Rev. D77 (2008) 094007, 0801.4051, Phys. Lett. B647 (2007) 56-61, hep-lat/0612020

QCD phase transition

finite temperature, $\mu = 0$, quenched

Polyakov loop trace tr P:

'deconfinement' center symmetry broken

chiral condensate \equiv spectral density of the Dirac operator *D* at $\lambda = 0$:

same T_c in quenched case: related!?

Falk Bruckmann

Fermionic boundary conditions

phase 'twisted' temporal boundary conditions:

 $\psi(x_0 + \beta, \vec{x}) = z \psi(x_0, \vec{x}), \qquad z = e^{i\phi} \text{ imag. chemical potential}$

as a probe, physical: $z = -1, \phi = \pi$ Gattringer '06

realised on the lattice:

 $U_0 \rightarrow {\color{black}{z}} U_0 \quad \text{at some time slice}$

formally: link U_0 in $U(N_c)$

• a numerical fact:

for $T > T_c$ a chiral condensate remains for $\phi = -$ angle(P) Chandrasekharan, Christ '95; Meisinger, Ogilvie '95; Stephanov '96 Gattringer, Rakow, A. Schäfer, Söldner '02; Gattringer, S. Schäfer '03 Bornyakov, Luschevskaya, Morozov, Polikarpov, Ilgenfritz, Müller-Preussker '08; Kovacs '08 where constant links ['vacua'] with same P allow for zero modes

The idea

• different closed loops *W* get different factors:

 $P \rightarrow e^{i\phi}P$ as well as all loops winding once $P^{\dagger} \rightarrow e^{-i\phi}P^{\dagger}$ as well as all loops winding minus once plaquettes stay as well as all 'trivial' loops (reconstruction of *P* from $D_{\phi}^{N_0}$ with three ϕ 's FB et al. '06)

The idea

• different closed loops *W* get different factors:

 $P \rightarrow e^{i\phi}P$ as well as all loops winding once $P^{\dagger} \rightarrow e^{-i\phi}P^{\dagger}$ as well as all loops winding minus once plaquettes stay as well as all 'trivial' loops (reconstruction of *P* from $D_{\phi}^{N_0}$ with three ϕ 's FB et al. '06) • all gauge invariant observables can be expanded in closed loops

propagator:

$$\operatorname{Tr} \frac{1}{m + D_{\phi}} = \frac{1}{m} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{m^{k}} \operatorname{Tr}(D_{\phi})^{k}$$
$$= \frac{1}{m} \sum_{\text{loops } W} c(m; W) \operatorname{tr} \prod_{W} U_{\mu}(x) e^{i\phi q(W)}$$

q(W): how many times the loop winds around $[0, \beta]$ staggered, $D \sim U$: $c = \frac{\pm 1}{(2am)^{\text{length}(W)}}$

The idea

• different closed loops *W* get different factors:

 $P \rightarrow e^{i\phi}P$ as well as all loops winding once $P^{\dagger} \rightarrow e^{-i\phi}P^{\dagger}$ as well as all loops winding minus once plaquettes stay as well as all 'trivial' loops (reconstruction of *P* from $D_{\phi}^{N_0}$ with three ϕ 's FB et al. '06) • all gauge invariant observables can be expanded in closed loops

propagator:

$$\operatorname{Tr} \frac{1}{m + D_{\phi}} = \frac{1}{m} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{m^{k}} \operatorname{Tr}(D_{\phi})^{k}$$
$$= \frac{1}{m} \sum_{\text{loops } W} c(m; W) \operatorname{tr} \prod_{W} U_{\mu}(x) e^{i\phi q(W)}$$

q(W): how many times the loop winds around $[0, \beta]$ staggered, $D \sim U$: $c = \frac{\pm 1}{(2am)^{\text{length}(W)}}$

different factors of e^{iφ} can be extracted via a Fourier transform

Falk Bruckmann

Fermionic boundary conditions

A new observable

FB et al. '08

$$\tilde{\Sigma}_{1} \equiv \int_{0}^{2\pi} \frac{d\phi}{2\pi} \, e^{-i\phi} \frac{1}{V} \Big\langle \operatorname{Tr} \frac{1}{m+D_{\phi}} \Big\rangle = \frac{1}{mV} \sum_{\text{loops } W} c(m; W) \Big\langle \operatorname{tr} \prod_{W} U_{\mu}(x) \Big\rangle$$
winding once

dual condensate

dressed Polyakov loops

massless limit:

$$\lim_{m\to 0}\lim_{V\to\infty}\tilde{\Sigma}_1=\int_0^{2\pi}\frac{d\phi}{2\pi}\,e^{-i\phi}\langle\bar{\psi}\psi\rangle_\phi$$

chiral condensate with boundary angle ϕ integrated over

massive limit:

$$\lim_{m\to\infty}\tilde{\Sigma}_1\sim \langle \text{tr}\, \boldsymbol{P}\rangle$$

thin Polyakov loop (shortest) detours suppressed by *m*

Order parameter

same pattern as for the conventional Polyakov loop same transformation under center symmetry

needs less renormalisation !?

Order parameter

same pattern as for the conventional Polyakov loop same transformation under center symmetry

needs less renormalisation !?

Mechanism

fermions respond differently to bc.s in confined and deconfined phase

propagator = integrand of $\tilde{\Sigma}_1$ without Fourier factor: FB et al. '08

real tr *P* (non-real tr *P*: plot shifted by $\pm 2\pi/3 \Rightarrow 2\pi/3$ -periodicity) question: $\tilde{\Sigma}_1$ behaves like *P*, but $\langle \bar{\psi}\psi \rangle$ opposite to *P*?! conf. phase: chiral condensate \checkmark but ϕ -independent $\stackrel{Fourier}{\longrightarrow} \tilde{\Sigma}_1 = 0$ deconf. phase: chiral condensate for periodic bc.s $\stackrel{Fourier}{\longrightarrow} \tilde{\Sigma}_1 \neq 0$

Spectral representation

Tr means sum over all eigenmodes:

$$\tilde{\Sigma}_{1} \equiv \int_{0}^{2\pi} \frac{d\phi}{2\pi} e^{-i\phi} \frac{1}{V} \Big\langle \operatorname{Tr} \frac{1}{m + D_{\phi}} \Big\rangle = \int_{0}^{2\pi} \frac{d\phi}{2\pi} e^{-i\phi} \frac{1}{V} \Big\langle \sum_{i} \frac{1}{m + \lambda_{\phi}^{(i)}} \Big\rangle$$

truncate the ev sum: IR dominance

FB et al. '08

expected: lowest modes most sensitive to bc.s, λ in denominator

Falk Bruckmann

convergence in the continuum

Synatschke, Wipf, Langfeld '08

all powers of D_{ϕ} Fourier transformed:

$$\int_0^{2\pi} \frac{d\phi}{2\pi} \, e^{-i\phi} \mathrm{Tr} \, (D_\phi)^k$$

- transform like the Polyakov loop under center symmetry
- converge

higher eigenvalues λ_{ϕ} less and less sensitive to bc.s ϕ heat kernel methods

fermion determinant prefers real tr P: no strict center symmetry preliminary (on MILC configurations): FB et al. '09

as expected: behaviour in confined phase like in deconfined one with small real Polyakov loop cf. Söldner '07

Σ_1 in the adjoint representation

testbed since: $T_c^{\text{chiral}} \sim 4 T_c^{\text{deconf}} (SU(2))$ Bilgici, Gattringer, Ilgenfritz, Maas '09 adjoint Polyakov loop: per. and antiper. condensates:

 $\tilde{\Sigma}_1$ for small and large mass:

$\tilde{\Sigma}_1$ and Dyson-Schwinger equations

loop integrals with ϕ -shifted Matsubara frequencies Fischer, Müller '09 integrand of $\tilde{\Sigma}_1$ without Fourier factor in the chiral limit:

inf. volume limit, larger T's ...

Relevant excitations!?

calorons \equiv instantons at finite temperature

Harrington, Shepard '78 Kraan, van Baal; Lee, Lu '98

topological (action) density for total charge Q = 1 in SU(3)

substructure: *N_c* constituents = magn. monopoles/dyons

masses governed by asymptotic Polyakov loop

$$P_{\infty} = \lim_{ert ec{x} ert o \infty} P(ec{x}) \dots$$
 holonomy

conjecture: holonomy tr $P_{\infty} \leftrightarrows$ order parameter $\langle \operatorname{tr} P \rangle$

 \Rightarrow dyon massses sensitive to the phase of QCD

 $\begin{array}{ll} \mbox{fermionic zero modes: } \psi^0_{\phi\simeq 0} \mbox{ at light dyon, } \psi^0_{\phi\simeq \pi} \mbox{ at heavy dyon} \\ \mbox{mechanism above } T_c \mbox{: heavy dyons suppressed} & \mbox{FB '09} \\ \Rightarrow \langle \bar{\psi}\psi \rangle_{\phi\simeq \pi} \mbox{ suppressed, } \langle \bar{\psi}\psi \rangle_{\phi\simeq 0} \mbox{ stays } \checkmark & \mbox{Bornyakov et al. '09} \\ \Rightarrow \mbox{ top. susceptibility suppr. } \checkmark & \end{array}$