Anomaly at Finite Density & Chiral Fermions on Lattice

Rajiv V. Gavai & Sayantan Sharma^{*} T. I. F. R., Mumbai

* arXiv: 0906.5188, submitted to Phys. Rev. D.

Anomaly at Finite Density & Chiral Fermions on Lattice

Rajiv V. Gavai & Sayantan Sharma^{*} T. I. F. R., Mumbai

Introduction

Anomaly for $\mu \neq 0$: Continuum

Two simple ideas for Lattice

Summary

* arXiv: 0906.5188, submitted to Phys. Rev. D.

Introduction

A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.

 \heartsuit In particular, two light flavours of quarks are crucial for it, as is the exact chiral symmetry on the lattice when the quark mass is tuned to zero.

 \heartsuit Temperature dependence of the Chiral Anomaly may be important as well; No CEP if instanton density is small enough below T_{ch} (Pisarski-Wilczek, 1984).

Introduction

A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.

 \heartsuit In particular, two light flavours of quarks are crucial for it, as is the exact chiral symmetry on the lattice when the quark mass is tuned to zero.

 \heartsuit Temperature dependence of the Chiral Anomaly may be important as well; No CEP if instanton density is small enough below T_{ch} (Pisarski-Wilczek, 1984).

The oft-used staggered fermions have (some) chiral symmetry but a not so well defined flavour number and no chiral anomaly.

♡ Use of Overlap fermions seems desirable. They even have an index theorem as well. (Hasenfratz, Laliena & Niedermeyer, PLB 1998; Luscher PLB 1998.)

 \heartsuit Note that chemical potential, μ_B , has to be introduced without violating the symmetries in order to investigate the entire T- μ_B plane.

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step. Adding simply μN leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $exp(a\mu)$ and $exp(-a\mu)$ respectively. No change in chiral invariance as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step. Adding simply μN leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).
- Non-locality makes the construction of N difficult for the Overlap case, even non-unique (Mandula, 2007).
- Bloch-Wettig (PRL 2006; PRD 2007) proposal : Use the same prescription as above, i.e., $D_W(0) \rightarrow D_W(a\mu)$ in the sign function.

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step. Adding simply μN leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).
- Non-locality makes the construction of N difficult for the Overlap case, even non-unique (Mandula, 2007).
- Bloch-Wettig (PRL 2006; PRD 2007) proposal : Use the same prescription as above, i.e., $D_W(0) \rightarrow D_W(a\mu)$ in the sign function.
- We (Banerjee, Gavai, Sharma, PRD 2008; PoS Lattice 2008) showed that the resultant overlap fermion action has i) no a^{-2} divergences but ii) unfortunately no chiral invariance for nonzero μ .

 \blacklozenge the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar\psi=\alpha\bar\psi(1-\frac{a}{2}D(a\mu))\gamma_5$?

 \blacklozenge the chiral transformations were $\delta\psi = \alpha\gamma_5(1 - \frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi} = \alpha\bar{\psi}(1 - \frac{a}{2}D(a\mu))\gamma_5$? $\delta S = 0$ then clearly.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

 \blacklozenge the chiral transformations were $\delta\psi = \alpha\gamma_5(1 - \frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi} = \alpha\bar{\psi}(1 - \frac{a}{2}D(a\mu))\gamma_5$? $\delta S = 0$ then clearly.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

• Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H, N_i] = 0$. At least the symmetry should not change as μ does.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

- Symmetry transformations should not depend on "external" parameter μ. Chemical potential is introduced for charges N_i with [H, N_i] = 0. At least the symmetry should not change as μ does.
- Moreover, symmetry groups *different* at each μ . Recall we wish to investigate $\langle \bar{\psi}\psi \rangle(a\mu)$ to explore if chiral symmetry is restored.
- The symmetry group remains same at each T with $\mu = 0$ $\implies \langle \bar{\psi}\psi \rangle (am = 0, T)$ is an order parameter for the chiral transition.

- Accepting the μ -dependent chiral transformations, on the other hand, leads to an index theorem for nonzero μ as well (Bloch-Wettig PRD 2007).
- The zero modes of $D_{ov}(a\mu)$ appear in the chiral anomaly relation.

- Accepting the μ -dependent chiral transformations, on the other hand, leads to an index theorem for nonzero μ as well (Bloch-Wettig PRD 2007).
- The zero modes of $D_{ov}(a\mu)$ appear in the chiral anomaly relation.
- What does nonzero μ do to the usual chiral anomaly in the continuum ?
- Calculations in real time (Qian, Su & Yu ZPC 1994) and Minkowski space-time (Hsu, Sannino & Schwetz MPLA 2001) formalisms show chiral anomaly is *unaffected* by nonzero μ .
- Conventional wisdom is that chiral anomaly is an ultra-violet effect. So expect no change due to nonzero μ .
- We re-visit the issue using a) Euclidean perturbation theory and b) the nonperturbative Fujikawa method.

Anomaly for $\mu \neq 0$: Continuum results

• Perturbatively we need to compute $\langle \partial_{\mu} j^5_{\mu} \rangle$, i.e., the triangle diagrams for $\mu \neq 0$.

• Denoting by $\Delta^{\lambda\rho\sigma}(k_1,k_2)$ the total amplitude and contracting it with q_{λ} ,

$$\begin{split} q_{\lambda} \Delta^{\lambda \rho \sigma} &= -i \ g^{2} \mathrm{tr}[T^{a} T^{b}] \int \frac{d^{4} p}{(2\pi)^{4}} \mathrm{Tr} \left[\gamma^{5} \frac{1}{p' - q' - i\mu\gamma^{4}} \gamma^{\sigma} \frac{1}{p' - k_{1}' - i\mu\gamma^{4}} \gamma^{\rho} \right. \\ &- \gamma^{5} \frac{1}{p' - i\mu\gamma^{4}} \gamma^{\sigma} \frac{1}{p' - k_{1}' - i\mu\gamma^{4}} \gamma^{\rho} + \gamma^{5} \frac{1}{p' - q' - i\mu\gamma^{4}} \gamma^{\rho} \frac{1}{p' - k_{2}' - i\mu\gamma^{4}} \gamma^{\sigma} \\ &- \gamma^{5} \frac{1}{p' - i\mu\gamma^{4}} \gamma^{\rho} \frac{1}{p' - k_{2}' - i\mu\gamma^{4}} \gamma^{\sigma} \right] \,. \end{split}$$

• Denoting by $\Delta^{\lambda\rho\sigma}(k_1,k_2)$ the total amplitude and contracting it with q_{λ} ,

$$\begin{split} q_{\lambda} \Delta^{\lambda\rho\sigma} &= -i \ g^{2} \mathrm{tr}[T^{a}T^{b}] \int \frac{d^{4}p}{(2\pi)^{4}} \mathrm{Tr} \left[\gamma^{5} \frac{1}{p'-q'-i\mu\gamma^{4}} \gamma^{\sigma} \frac{1}{p'-k_{1}'-i\mu\gamma^{4}} \gamma^{\rho} \right. \\ &- \gamma^{5} \frac{1}{p'-i\mu\gamma^{4}} \gamma^{\sigma} \frac{1}{p'-k_{1}'-i\mu\gamma^{4}} \gamma^{\rho} + \gamma^{5} \frac{1}{p'-q'-i\mu\gamma^{4}} \gamma^{\rho} \frac{1}{p'-k_{2}'-i\mu\gamma^{4}} \gamma^{\sigma} \\ &- \gamma^{5} \frac{1}{p'-i\mu\gamma^{4}} \gamma^{\rho} \frac{1}{p'-k_{2}'-i\mu\gamma^{4}} \gamma^{\sigma} \right] \,. \end{split}$$

• Quadratic Divergent integrals; need cut-off which should be gauge invariant since

$$k_{1\rho}\Delta^{\lambda\rho\sigma}(k_1,k_2) = k_{2\sigma}\Delta^{\lambda\rho\sigma}(k_1,k_2) = 0.$$

• Can be done as for $\mu = 0$ by writing $q_{\lambda} \Delta^{\lambda \rho \sigma} = (-i) \operatorname{tr} [T^a T^b] g^2 \int \frac{d^4 p}{(2\pi)^4} [f(p-k_1,k_2) - f(p,k_2) + f(p-k_2,k_1) - f(p,k_1)].$

- The final result is $\propto f$ due to the structure above.
- Due to nonzero μ , the function f has $(p_4^2 + \vec{p}^2) \rightarrow ((p_4 i\mu)^2 + \vec{p}^2)$ in the denominator and terms proportional to μ and μ^2 in the numerator.
- Since the μ^2 terms have Tr $[\gamma^5\gamma^4\gamma^\sigma\gamma^4\gamma^\rho] \sim \epsilon^{4\sigma4\rho}$, they vanish.

- The final result is $\propto f$ due to the structure above.
- Due to nonzero μ , the function f has $(p_4^2 + \vec{p}^2) \rightarrow ((p_4 i\mu)^2 + \vec{p}^2)$ in the denominator and terms proportional to μ and μ^2 in the numerator.
- Since the μ^2 terms have Tr $[\gamma^5\gamma^4\gamma^\sigma\gamma^4\gamma^\rho] \sim \epsilon^{4\sigma4\rho}$, they vanish.
- Scaling the integration variable by the cut-off Λ , the μ -dependent terms appear with Λ^{-1} , leading to μ independence as $\Lambda \to \infty$: The same anomaly relation as for $\mu = 0$.
- In agreement with earlier calculations in real time (Qian, Su & Yu ZPC 1994) or Minkowski space-time (Hsu, Sannino & Schwetz MPLA 2001), which are more involved.

Anomaly for $\mu \neq 0$: Fujikawa method

• Under the chiral transformation of the fermion fields, given by,

$$\psi' = \exp(i\alpha\gamma_5)\psi$$
 and $\bar{\psi}' = \bar{\psi}\exp(i\alpha\gamma_5)$, (1)

the measure changes as

$$\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = \mathcal{D}\bar{\psi}\mathcal{D}\psi \operatorname{Det}\left|\frac{\partial(\bar{\psi}',\psi')}{\partial(\bar{\psi},\psi)}\right| = \exp(-2i\alpha \int d^4x \operatorname{Tr}\gamma_5) .$$
(2)

Anomaly for $\mu \neq 0$: Fujikawa method

• Under the chiral transformation of the fermion fields, given by,

$$\psi' = \exp(i\alpha\gamma_5)\psi$$
 and $\bar{\psi}' = \bar{\psi}\exp(i\alpha\gamma_5)$, (1)

9

Top

the measure changes as

$$\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = \mathcal{D}\bar{\psi}\mathcal{D}\psi \operatorname{Det}\left|\frac{\partial(\bar{\psi}',\psi')}{\partial(\bar{\psi},\psi)}\right| = \exp(-2i\alpha \int d^4x \operatorname{Tr}\gamma_5) .$$
(2)

- Evaluate the trace using the eigenvectors of the operator $D / \mu = 0$.
- Since $\{\gamma_5, \mathbb{D}\} = 0$, for each finite λ_n , $\phi_n^{\pm} = \phi_n \pm \gamma_5 \phi_n$, eigenvectors of γ_5 with ± 1 eigenvalues, can be used, leading to zero.

• Zero eigenmodes of D have definite chirality, leading to Tr $\gamma_5 = n_+ - n_-$.

- Zero eigenmodes of D have definite chirality, leading to Tr $\gamma_5 = n_+ n_-$.
- For $\mu \neq 0$, use the eigenvectors of the operator $\mathcal{D}(\mu)$.
- It still anti-commutes with γ_5 but has both an anti-Hermitian and a Hermitian term. Remarkably, it turns out still to be diagonalizable.

- Zero eigenmodes of D have definite chirality, leading to Tr $\gamma_5 = n_+ n_-$.
- For $\mu \neq 0$, use the eigenvectors of the operator $\mathcal{D}(\mu)$.
- It still anti-commutes with γ_5 but has both an anti-Hermitian and a Hermitian term. Remarkably, it turns out still to be diagonalizable.
- Define two new vectors, ζ_m and υ_m

$$\zeta_m(\mathbf{x},\tau) = e^{\mu\tau} \phi_m(\mathbf{x},\tau) \quad , \quad \upsilon_m^{\dagger}(\mathbf{x},\tau) = \phi_m^{\dagger}(\mathbf{x},\tau) e^{-\mu\tau} \quad . \tag{3}$$

Easy to show that ζ_m (υ[†]_m) is the eigenvector of 𝒫(μ) (𝒫(μ)[†]) with the same (purely imaginary) eigenvalue λ_m (-λ_m).

- Further, one can show $\sum_{m} \int \zeta_m(\mathbf{x}, \tau) v_m^{\dagger}(\mathbf{x}, \tau) d^4x = \mathbf{I}$ and $\int v_m^{\dagger}(\mathbf{x}, \tau) \zeta_m(\mathbf{x}, \tau) d^4x = 1$.
- Using these eigenvector spaces of $\mathcal{D}(\mu)$, trace of γ_5 can again be shown to be zero for all non-zero λ_m , leading to Tr $\gamma_5 = n_+ n_-$ for $\mu \neq 0$ as well.
- Both perturbatively, and nonperturbatively, we have shown that the anomaly does not change at finite density, as may have been expected naively.

- Further, one can show $\sum_m \int \zeta_m(\mathbf{x},\tau) v_m^{\dagger}(\mathbf{x},\tau) d^4x = \mathbf{I}$ and $\int v_m^{\dagger}(\mathbf{x},\tau) \zeta_m(\mathbf{x},\tau) d^4x = 1$.
- Using these eigenvector spaces of $\mathcal{D}(\mu)$, trace of γ_5 can again be shown to be zero for all non-zero λ_m , leading to Tr $\gamma_5 = n_+ n_-$ for $\mu \neq 0$ as well.
- Both perturbatively, and nonperturbatively, we have shown that the anomaly does not change at finite density, as may have been expected naively.
- If chiral transformation on lattice is chosen to depend on μ , so that Bloch-Wettig proposal has chiral invariance for $\mu \neq 0$, then the resulting index theorem has μ -dependent zero modes which determine the anomaly, unlike in the continuum.
- It is undesirable for other reasons we pointed out earlier (Banerjee, Gavai, Sharma, PoS Lattice 2008).

11

A "Gauge-like" Transformation

- A non-unitary transformation of the fermion fields of the QCD action in the presence of μ , given by $\psi'(\mathbf{x},\tau) = e^{\mu\tau}\psi(\mathbf{x},\tau)$, $\bar{\psi}'(\mathbf{x},\tau) = \bar{\psi}(\mathbf{x},\tau)e^{-\mu\tau}$, makes the action μ -independent: $S_F(\mu) \to S'_F(0)$.
- It commutes with the Chiral Transformations. Explains the rescaling of eigenvectors, leaving the spectrum unchanged. Preserves anomaly as well.

A "Gauge-like" Transformation

- A non-unitary transformation of the fermion fields of the QCD action in the presence of μ , given by $\psi'(\mathbf{x}, \tau) = e^{\mu\tau}\psi(\mathbf{x}, \tau)$, $\bar{\psi}'(\mathbf{x}, \tau) = \bar{\psi}(\mathbf{x}, \tau)e^{-\mu\tau}$, makes the action μ -independent: $S_F(\mu) \to S'_F(0)$.
- It commutes with the Chiral Transformations. Explains the rescaling of eigenvectors, leaving the spectrum unchanged. Preserves anomaly as well.
- Easy to see that it works for any local fermion action, including for the lattice action, with $\mu \tau \rightarrow a_4 \mu * n_4$ leading to the Hasenfratz-Karsch prescription or the more general $f(\mu a_4) * n_4$ to the others.
- Generalization for non-local cases, Overlap fermions, does not appear particularly useful. For the free case $e^{\mu\tau}D_{ov}(\mu=0)e^{-\mu\tau}$ is free of a^{-2} divergence but does not appear to have chiral invariance. :'(

Top

12

Two simple ideas for Lattice

• Only fermions confined to the domain wall are physical, so introduce a chemical potential only to count them:

$$D_{ov}(\hat{\mu})_{xy} = (D_{ov})_{xy} - \frac{a\hat{\mu}}{2a_4 M} \left[(1 - \gamma_4) U_4(y) \delta_{x,y-\hat{4}} + (\gamma_4 + 1) U_4^{\dagger}(x) \delta_{x,y+\hat{4}} \right] .$$
(4)

Тор

13

Two simple ideas for Lattice

• Only fermions confined to the domain wall are physical, so introduce a chemical potential only to count them:

$$D_{ov}(\hat{\mu})_{xy} = (D_{ov})_{xy} - \frac{a\hat{\mu}}{2a_4 M} \left[(1 - \gamma_4) U_4(y) \delta_{x,y-\hat{4}} + (\gamma_4 + 1) U_4^{\dagger}(x) \delta_{x,y+\hat{4}} \right] .$$
(4)

- As the Bloch-Wettig proposal, this too breaks chiral invariance but D_{ov} is defined by the usual sign-function. But clearly Simpler !
- Expect a^{-2} -divergences as $a \to 0$. Follow the same prescription used for the Pressure computation (which diverges at zero temperature as Λ^4). Use Large N_{τ} and the same lattice spacing a for subtraction.

- Consider two Observables : $\Delta \epsilon(\mu, T) = \epsilon(\mu, T) \epsilon(0, T)$ and Susceptibility, $\sim \partial^2 \ln Z / \partial \mu^2$.
- Former computed for $r = \mu/T = 0.5$ while latter for $\mu = 0$.

- Consider two Observables : $\Delta \epsilon(\mu, T) = \epsilon(\mu, T) \epsilon(0, T)$ and Susceptibility, $\sim \partial^2 \ln Z / \partial \mu^2$.
- Former computed for $r = \mu/T = 0.5$ while latter for $\mu = 0$.

• Much less M-dependence for our proposal, and

• less oscillations compared to the Bloch-Wettig form.

4th Order Susceptibility : A) $\hat{\mu}/s$ and B) $\hat{\mu}/M$

4th Order Susceptibility : A) $\,\hat{\mu}/s$ and B) $\hat{\mu}/M$

- Divergences can be eliminated; *M*-dependence milder.
- Slow convergence to the expected continuum value; Can be improved by using higher-link derivatives, or even variations of the coefficients of the $\hat{\mu}$ -term.

2nd Idea : Extend to Local Fermions

• We propose to introduce μ in general by

$$S_F = \sum_{x,y} \bar{\Psi}(x) M(\mu; x, y) \Psi(y)$$

= $\sum_{x,y} \bar{\Psi}(x) D(x, y) \Psi(y) + \mu a \sum_{x,y} N(x, y).$

Here D can be the staggered, overlap, the Wilson-Dirac or any other suitable fermion operator and N(x,y) is the corresponding point-split and gauge invariant number density.

2nd Idea : Extend to Local Fermions

 \bullet We propose to introduce μ in general by

$$S_F = \sum_{x,y} \bar{\Psi}(x) M(\mu; x, y) \Psi(y)$$

= $\sum_{x,y} \bar{\Psi}(x) D(x, y) \Psi(y) + \mu a \sum_{x,y} N(x, y).$

Here D can be the staggered, overlap, the Wilson-Dirac or any other suitable fermion operator and N(x,y) is the corresponding point-split and gauge invariant number density.

• This leads to

$$M' = \sum_{x,y} N(x,y)$$
, and $M'' = M''' = M'''' \dots = 0$,

in contrast to the popular $\exp(\pm a\mu)$ -prescription where *all* derivatives are nonzero:

$$M'=M'''...=\sum_{x,y}N(x,y)$$
 and $M''=M''''=M'''''...\neq 0$.

- Lot fewer terms in the Taylor coefficients, especially as the order increases. E.g., in the 4th order susceptibility, $\mathcal{O}_4 = -6 \operatorname{Tr} (M^{-1}M')^4$ in our proposal, compared to $\mathcal{O}_4 = -6 \operatorname{Tr} (M^{-1}M')^4 + 12 \operatorname{Tr} (M^{-1}M')^2 M^{-1}M'' - 3 \operatorname{Tr} (M^{-1}M'')^2 - 3 \operatorname{Tr} M^{-1}M'M^{-1}M''' + \operatorname{Tr} M^{-1}M''''$.
- \mathcal{O}_8 has one term in contrast to 18 in the usual case. \implies Number of M^{-1} computations needed are lesser.

Summary

- We showed, both perturbatively and non-perturbatively, that the introduction of nonzero μ leaves the anomaly unaffected. The zero modes of the Dirac operator for $\mu = 0$ govern it; nonzero μ simply scales the eigenvectors.
- A "gauge-like" symmetry in the continuum can be traced as the reason for anomaly preservation. Local lattice actions can easily adopt it. But how to ensure that for the overlap like non-local fermions remains unclear.

Summary

- We showed, both perturbatively and non-perturbatively, that the introduction of nonzero μ leaves the anomaly unaffected. The zero modes of the Dirac operator for $\mu = 0$ govern it; nonzero μ simply scales the eigenvectors.
- A "gauge-like" symmetry in the continuum can be traced as the reason for anomaly preservation. Local lattice actions can easily adopt it. But how to ensure that for the overlap like non-local fermions remains unclear.
- Overlap fermions at finite density could be studied by simply adding the μ -term linearly. The chiral symmetry breaking is similar but the inverse propagator simpler.
- Extending to staggered fermions, it may be less costly to implement this idea and may permit extensions to higher orders.

19