Towards charmonium spectroscopy at threshold from lattice QCD

Sinéad M. Ryan for the Hadron Spectrum Collaboration

Trinity College, Dublin

FAIR Lattice QCD Days

Introduction

- New experimental results for Charmonium are motivating lattice studies.
- In principle lattice QCD can help to shed light on the nature of the excited spectrum of *cc* states.
- Control the statistical and systematic errors in determining energy levels to resolve a tower of radial and orbital states?
- Discrete group theory to understand particle identification in the observed spectrum.
- Understand states above threshold.

Determining the *cc* spectrum: a strategy

- Spin assignment: identification of the observed excitations in lattice data
- Use dynamical anisotropic lattices
 - $N_f = 2$,
 - 3 + 1 anisotropy, $\xi = a_s / a_t = 3.5$
 - relativistic charm quarks, a_tm_c « 1 and a_sm_c < 1. Good since m_c light for HQET.
- Use "distillation"
- Use extended operators, smeared operators and variational analysis
 - allows us to extract multiple excitations

Spin assignment from lattice states (1)

- The lattice explicitly breaks *O*(3) rotational symmetry to a finite 48-element sub-group *O_h*, the cubic point group.
- Eigenstates of the lattice hamiltonian will simultaneously be eigenstates of O_h only, so are classified according to their irreducible representation under action of O_h.
- Parity is still a good quantum number (use sub-script *g* and *u* for even/odd)
- O_h has 10 irreps:

Irrep	A_{1g}, A_{1u}	A_{2g}, A_{2u}	E_g, E_u	T_{1g}, T_{1u}	T_{2g}, T_{2u}
Dim	1	1	2	3	3

Spin assignment from lattice states (2)

 Continuum spin assignment is made by forming the representations of O_h subduced from O(3). Multiplicities:

J	0	1	2	3	4
A ₁	1	0	0	0	1
A 2	0	0	0	1	0
Ε	0	0	1	0	1
T_1	0	1	0	1	1
<i>T</i> ₂	0	0	1	1	1

 Degeneracies across lattice irreps as continuum is approached

- Difficulty for charmonium: small hyperfine splittings, near-degeneracy of many states with different spin assignments.
- A pathological example: it would be hard to distinguish near-degenerate triplet of spin 0,1,2 from spin 4. Both these systems have the same lattice irrep content:
 A₁ ⊕ T₁ ⊕ E ⊕ T₂. Can a radial excitation of P-wave c̄c be distinguished from 4⁺⁺ F-wave?

Operator construction

- Lattice operators are bilinears with path-ordered products between the quark and anti-quark field; different offsets, connecting paths and spin contractions give different projections into lattice irreps.
- This analysis uses a sub-set of the operators given below.

- This gives all S and P wave irreps, some D and beyond.
- In progress: more complete basis construction.

Simulation Details

Use an anisotropic action, $\xi = a_s/a_t = 3.5$. full details in [Phys.Rev.D79:034502,2009]

- Fermion action: anisotropic clover stout-link.
- Gauge action: Symanzik-improved, tree-level tadpole coefficients. (O(α⁴_s, a²_t, g²a²_s)).

 $\xi = a_s/a_t$ is non-perturbatively tuned [PRD 74 014505 (2006)].

The HSC has a range of volumes and quark masses to $32^3 \times 256$ with $m_\pi \sim 220$ MeV. Simulation Parameters

Flavours $N_f = 3.$ Light quarks m_{π}/m_{ρ} = 0.66Lattice volume $12^3 \times 96$ $a_{(m_{\Omega})}^{-1}$ 4.76GeV^{-1}

from diluting to distilling...

Distillation (talk yesterday).

Might ask how big should the distillation space be?

 Effective mass for both S-wave (η_c) and P-wave (h_c) still falling as N is increased.

Charmonium meets the GPU

- For this test, using CUDA implementation of SW inverter implemented by Clark and Babich and linked to chroma system by Joó
- Sustains 100 GFlops (single precision) for inversion on Tesla C1060 (=1.5c/MFlop)
- Double precision solves almost as fast (via algorithmic tricks)

- Current software limitation only N = 24 possible on $12^3 \times 96$ lattice on desktop
- Inversions from all time-slices for N = 24 requires about 3 hours per configuration

Determination of energies using the variational method

Use the variational analysis of Michael, NPB 259, 58 (1985) and Lüscher and Wolf, NPB339, 222, (1990).

- Create a basis of interpolating operators for the state of interest, O_α, α = 1, 2, ..., n using point and extended operators as well as different smearings.
- construct the matrix

$$\mathcal{C}_{lphaeta}=\langle 0|\mathcal{O}_{lpha}(t)\mathcal{O}_{eta}^{\dagger}(0)|0
angle$$

- solve for the eigenvalues λ_{α} of the matrix $C(t_0)^{-1/2}C(t)C(t_0)^{-1/2}$ where t_0 is some small reference time, $(\lambda_1 \ge \lambda_2 \ge \lambda_3...)$
- Then

$$\lim_{t\to\infty}\lambda_{\alpha}(t,t_0)=e^{-(t-t_0)E_{\alpha}}[1+O(e^{(-t\Delta E_{\alpha})}]$$

We expect to see plots like ...

... but better.

The spectrum: preliminary

The spectrum: preliminary

Including disconnected diagrams (1)

 $c\bar{c}$ interpolating operators are singlet $(\bar{c}\Gamma c) \rightarrow$ bubble diagrams in Wick contractions.

OZI suppressed \Rightarrow small. Unless other nonperturbative effects play a role.

Usually non-singlet (connected) correlators are calculated. The disconnected diagrams require all-to-all propagators.

The disconnected contribution to η_c .

- Fit (1 D/C) to resolve $m_{\eta_c(C-D)} \approx m_{\eta_c(C)}$
- Mixing of the non-singlet with a nearby glueball (as in Morningstar & Peardon PRD60, 034509) \rightarrow states repel? Predicts the singlet contribution raises $m_{\eta c}$ and lowers $m_{J/\Psi}$?
- All very preliminary yet an analysis is underway.

Including threshold effects:

Calulating threshold effects is (relatively) straightforward with distillation. Eg. one needs to determine the S-wave mixing

The effective mass for $\chi_{c_0} \rightarrow D_s \overline{D}_s$

Conclusions

- This is a first application of distillation to charmonium. Small lattices, heavy (light) quarks, better tuning of m_c , better determination of a^{-1} , bigger distillation space.
- The combination of anisotropic lattices, distillation and variational fitting techniques mean the orbital, radial and gluonic excitations of Charmonia can be resolved.
- Additional operators will give a definitive spin identification of calculated excited states. In progress.
- A similar analysis is in progress for the heavy-light (D_(s)) system
- Simulations at finer lattice spacings and at lighter sea quark masses are underway.
- Distillation allows us to investigate threshold effects.
- GPU implementation is proving very efficient!