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Motivations for glueball studies

• Self-interaction of gluon → Do bound states of gluon exist ?

• From the theoretical point of view the question is cleanly posen in the
pure YM theory

• Experimentally: search of extra states (resonances) not in the quark
model (cold be glueballs, tetraquarks ... exotic)

no electric charge (no direct coupling to γ), no flavor (flavor blind
decay mode)

• Most exploited channel,
J/Ψ radiative decays
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BES, SLAC (MARK), FAIR ?

• Several resonances, f0’s for the 0++ and η’s for the 0−+ between 1.5
and 2 GeV.

• Precise theoretical predictions are needed to safely identify these
states as glueballs.

• In the full theory glueballs mix with qq states !! [TχL, UKQCD]
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Exponential growth of the signal to noise ratio (Parisi ’84, Lepage ’89)

Consider a point to point correlation function interpolating (eg) a meson.
The signal is given by the expectation value of

while the variance is given by the expectation value of

Luckily Wick-contractions are done before squaring, for the variance. Then a

multi-pion state dominates, otherwise it would be the vacuum (as for YM).
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pion RNS ∝ const

ρ RNS ∝ exp((mρ −mπ)t)

N RNS ∝ exp((mN − 3
2mπ)t)
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O(2000) quenched confs (β = 6.2, κ = 0.1526) in APE, hep-lat/9611021
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Yang-Mills theory

• For an operator interpolating a parity odd glueball

COG
(t) = 〈OG (t)OG (0)〉 → |〈0|OG (0)|G−〉|2 e−MG− t + . . .

the variance can be estimated as

σ2 = 〈O2
G (t)O2

G (0)〉 − 〈OG (t)OG (0)〉2 → 〈0|O2
G (0)|0〉2 + . . .

• The noise to signal ratio at large time separations is given by

RNS(t) →
〈0|O2

G (0)|0〉
|〈0|OG (0)|G−〉|2

eMG− t + . . .
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H. Meyer, JHEP 0901:071,2009.

Signal up to 0.5 fm at most.
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C. Morningstar and M. Peardon, 1999 ....
Nice results, which however we believe need to be checked concerning
systematic effects. In particular a single state dominance in the correlation
function for large x0 (in fm.) is not always observed. Rather, compromises
between excited states contributions at short time- and large errors at
large time-separations.
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• On a given gauge configuration symmetries as parity are not
preserved. All states are allowed to propagate despite the quantum
numbers of the source.

• In the gauge average each configuration gives a contribution
O(e−MG− t) to the signal and O(1) to the variance.

This suggests one should introduce some sort of projectors on the relevant
states, but it is not clear what that means in the path integral approach of
Monte Carlo simulations.
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Decomposition of the path integral and boundary conditions

with periodic boundary conditions Z =
∫

D3[V ]〈V |e−TĤ P̂G |V 〉

Z = Z+ + Z− , Z± = e−E0 T

[
1± 1

2
+

∑
n=1

w±
n e−E±

n T

]

We introduce a parity transformation

℘̂ |V 〉 = |V ℘〉 , V ℘
k (x) = V †

k (−x− k̂) ,

with V̂k(x)|V 〉 = Vk(x)|V 〉 and

Z tw =

∫
D3[V ]〈V |e−TĤ P̂G |V ℘〉 =

∑
G

∫
D3[V ]〈V |G 〉〈G |e−TĤ℘̂|G 〉〈G |V 〉 = Z+ − Z−
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so Z−Z tw

2 = Z− and Z−

Z for large T should be dominated by the lightest
parity odd glueball.

Our strategy consists in computing the ratio Z tw

Z where the boundary
conditions in Z tw are parity twisted

So far anyway the exponential problem remains unsolved ...
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Recursive relations in the transfer matrix formalism

The Transfer matrix elements 〈Vx0+1|T̂ P̂G |Vx0〉 give the probability for
the state Vx0 to evolve into the state Vx0+1 within a timeslice.

We introduce Parity eigenstates

|V ,±〉 = 1√
2

[
|V 〉 ± |V ℘〉

]
with Transfer matrix elements

〈s ′,Vx0+1|T̂|Vx0 , s〉 = 2 δs′s Ts
[
Vx0+1,Vx0

]
Ts

[
Vx0+1,Vx0

]
= 1

2

{
T

[
Vx0+1,Vx0

]
+ s T

[
Vx0+1,V

℘
x0

]}
.

The definition can be easily generalized to thick time-slices of size d and
the ratio of such Transfer matrix elements can be numerically computed
by O(V) MC simulations for each choice of the boundaries Vx0 and Vx0+d .
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Symmetry-Constrained Monte Carlo

By dividing the time extent T into several thick time-slices of size d , Z s

can be obtained as the product of the ratios Ts

T integrated over the
boundary configurations

Z s

Z
=

1

Z

∫
D4[U] e−S[U] Ps

m,d

[
T , 0

]
,with T = m ∗ d

Ps
m,d

[
T , 0

]
=

m−1∏
i=0

Ts[Vx0+(i+1)·d ,Vx0+i·d ]

T[Vx0+(i+1)·d ,Vx0+i·d ]

At this point a multilevel algorithm can be used to achieve an exponential
error reduction, similarly to what was done by Lüscher and Weisz ’01 for
the Polyakov Loops

The insertion of Ts [Vy0 ,Vx0 ] in the path integral plays the role of a
projector and allows the propagation of states with a given parity only.
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As we need to compute P−
m,d [T , 0] for each boundary configuration

generated with the weight e−S[U] we are performing MC simulations
within a MC simulation → We have a V 2 algorithm.

We extract the effective mass from

meff
G−(T ) = − 1

T
ln

(
Z−

Z
(T )

)
For a given precision on that, the algorithm scaling with T is proportional
to ' e2mG−d · (T

d )2 to be compared with the ' e2mG−T scaling of the
standard technique
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Results (Wilson action, β = 5.7)
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We could follow the exponential decay over 7 orders of magnitude.

By increasing the precision on the points at large T (T/a > 12) we could also

extract the multiplicity of the state, which is not accessible in other approaches.

As now we have asummed it to be 1.
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Signal up to more than 3 fm separation !

Finite size effects clearly visible for L < 1.7 fm .

For JPC = 0−+ we estimate r0mG− = 3.07(7) β = 5.7, Wilson. [Preliminary]
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Conclusions and outlook

• The noise to signal exponential problem can be solved by enforcing
the propagation in time of states with the desired quantum numbers
only

• We have tested the strategy in the pure-YM case for the mass of the
first parity-odd state

• In the future we plan to extend the computation to larger volumes
and finer lattice spacings. The existence of a bound glueball state
could then be proven in a theoretically sound way (a single state
dominating a correlation function over large time separations).

• but also to consider other symmetries (C-parity rather similar, O(3) a
bit more complicated)

• Fermions ?
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