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B. Knippschild, H. Wittig, M. Zambrana

GSI – 24.11.2009 – p.1



Introduction

Ongoing long-term project to compute hadronic correlation functions – at fine

lattice spacings, and with full control over the systematic errors

FORM FACTORS, STRUCTURE FUNCTIONS, GENERALIZED PARTON

DISTRIBUTIONS, . . .

Nf = 2 flavours of (non-perturbatively) O(a) improved Wilson quarks

Preliminary results: obtained at three quark masses
(κ = 0.13640,0.13650, 0.13660) on a 96 · 483 lattice at β = 5.5

→ lattice spacing a = 0.06 fm, lattice size L = 2.9 fm

In the current runs: smallest pion mass around 360 MeV , which corresponds
to mπL = 5.3

Maintaining mπL > 3 is a necessary condition to control finite-volume effects
and obtain significant results

Approaching the chiral limit (mπ → 135 MeV ) will require very large lattices

and substantial computational efforts

The work is part of the CLS project ( “Coordinated Lattice Simulations” )
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Introduction

CLS: generate a set of ensembles for QCD with two dynamical flavours for a
variety of lattice spacings (a ≈ 0.04, 0.06, 0.08 fm) and volumes , such that
the continuum limit can be taken in a controlled manner

CLS: Berlin - CERN - DESY - Madrid - Mainz - Milan - Rome - Valencia

→ share configurations and technology

WE NEED TO HAVE FULL CONTROL OVER ALL SYSTEMATICS

Continuum limit of lattice QCD with dynamical quarks still poorly understood
→ no continuum limit for many phenomenologically interesting observables

There are not many systematic scaling studies of hadronic quantities

Many results obtained at one or two values of the lattice spacing only

mπL is often dangerously small (≤ 3)

To tune the masses of the light quarks towards their physical values and at the
same time keep the numerical effort in the simulations at a manageable level:
deflation accelerated DD-HMC algorithm

DD-HMC algorithm on commodity cluster hardware
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The Wilson Cluster

I-2
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The Wilson Cluster

Cluster platform Wilson, at the Inst. for Nuclear Physics in the Univ. of Mainz

Fully commissioned in NOVEMBER 2008

Exclusively used for lattice QCD

280 nodes, each equipped with two AMD 2356 QuadCore processors

⇒ 2240 cores, clocked at 2.3 GHz

Sustained performance: up to 3.6 TF lops (depending on local system size)

Cost: 1.1 Million euros

⇒ cost-effectiveness of about 0.30 euros/MFlops (sustained)

Each core: 1 GByte of memory → cluster’s total memory” 2.24 TBytes

Communication between nodes: realised via an Infiniband network and switch

The compute nodes are placed in water-cooled server racks

The required cooling capacity per compute speed is 20 kW/TF lops
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Runs

By now: about one year of production runs

We have generated configurations at β = 5.5 on lattices of size 96 · 483

→ a = 0.06 fm, L = 2.9 fm

The length of one Hybrid Monte Carlo trajectory was set to τ = 0.5

Symanzik improvement, with csw = 1.75150

Calculation of quark propagators, extended propagators, 2-point and 3-point
correlation functions, . . .

Analysis

In the future: 0.04 fm ≤ a ≤ 0.08 fm

Meson physics and baryon physics
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The baryon project

Extensive project for the computation of matrix elements of baryons

Code for baryonic correlators (2pt, 3pt) : we developed several routines which
extend the freely available code by Martin Lüscher (based on DD-HMC)

Observables:

FORM FACTORS

STRUCTURE FUNCTIONS

GENERALIZED PARTON DISTRIBUTIONS

....

The generic structures of the operators which measure the moments of
structure functions are

ψγµDµ1
. . . Dµn

ψ, ψγµγ5Dµ1
. . . Dµn

ψ

for unpolarized and polarized structure functions respectively, and

ψσµνγ5Dµ1
. . .Dµn

ψ

for the transversity structure function
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Some technical points

At this stage of the project:

Calculation of matrix elements (3-point correlators): need to generate
the quark propagator S(y, x) from every source x to every other sink y

⇒ would require L3 · T inversions of the Dirac operator

Solution: extended propagators

Low transferred momenta → twisted boundary conditions

Better interpolating operators: Jacobi smearing, stochastic sources . . .

SSE3 rewriting of the most frequently used functions

Not yet completely “settled”:

disconnected diagrams

twisted boundary conditions for some baryonic correlators
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Extended propagators

Extended source method: we need to compute
0 x

Γ

y

Tr

( ∑

~y;y0=τ

ei ~q·~y S(0, y)O(y)
∑

~x;x0=t

e−i ~p·~x S(y, x) γ5 S(x, 0) γ5

)
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Extended propagators

Extended source method: we need to compute
0 x

Γ

y

Tr

( ∑

~y;y0=τ

ei ~q·~y S(0, y)O(y)
∑

~x;x0=t

e−i ~p·~x S(y, x) γ5 S(x, 0)

︸ ︷︷ ︸

γ5

)

Define the extended propagator : Σ(y, 0) =
∑

~x;x0=t

e−i ~p·~x S(y, x) γ5 S(x, 0)

GSI – 24.11.2009 – p.9



Extended propagators

Extended source method: we need to compute
0 x

Γ

y

Tr

( ∑

~y;y0=τ

ei ~q·~y S(0, y)O(y)
∑

~x;x0=t

e−i ~p·~x S(y, x) γ5 S(x, 0)

︸ ︷︷ ︸

γ5

)

Define the extended propagator : Σ(y, 0) =
∑

~x;x0=t

e−i ~p·~x S(y, x) γ5 S(x, 0)

The matrix element then becomes Tr

( ∑

~y;y0=τ

ei ~q·~y S(0, y)O(y) Σ(y, 0) γ5

)
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Extended propagators

Extended source method: we need to compute
0 x

Γ

y

Tr

( ∑

~y;y0=τ

ei ~q·~y S(0, y)O(y)
∑

~x;x0=t

e−i ~p·~x S(y, x) γ5 S(x, 0)

︸ ︷︷ ︸

γ5

)

Define the extended propagator : Σ(y, 0) =
∑

~x;x0=t

e−i ~p·~x S(y, x) γ5 S(x, 0)

The matrix element then becomes Tr

( ∑

~y;y0=τ

ei ~q·~y S(0, y)O(y) Σ(y, 0) γ5

)

The extended propagator can then be obtained by a simple additional
inversion (for each choice of the final momentum ~p ):

∑

y

M(z, y)Σ(y, 0) = e−i ~p·~z γ5 S(z, 0)

∣
∣
∣
z0=t
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Extended propagators

Changing the properties of the sink, i.e., simulating:

several final momenta , or

a different field interpolator , or

a different smearing for the sink

requires the computation of new extended propagators and becomes rapidly
rather expensive
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Extended propagators

Changing the properties of the sink, i.e., simulating:

several final momenta , or

a different field interpolator , or

a different smearing for the sink

requires the computation of new extended propagators and becomes rapidly
rather expensive

We have however chosen to define the extended propagators through a fixed
sink rather than through a fixed current

A fixed current would be indeed even more expensive, because it requires a
new inversion for

each different value of the momentum transfer , or

every new type of operator (scalar, vector, . . . )
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Baryons

Standard interpolating operators for the nucleon, the ∆ and the Ω

The current that we use for the nucleon, and the ∆+ and ∆0 particles of the
spin-3/2 decuplet, is given by

Jγ(x) = ǫabc
(
ua(x) Γ db(x)

)
ucγ(x)

For the nucleon Γ = Cγ5, while for the ∆+ and ∆0 one must use Γ = Cγµ

The current
Jγ(x) = ǫabc

(
ua(x) Γub(x)

)
ucγ(x)

is used for the ∆++ particle, with Γ = Cγµ

If the u quarks are replaced by the d or s flavor we obtain the ∆− or Ω−

baryons, respectively

2-point correlator for the nucleon:

−ǫabc ǫa
′b′c′ Γαβ (Γ

T
)α′β′ Sbb

′

ββ′

(

Saa
′

αα′ Scc
′

γγ′ − Sac
′

αγ′ S
ca′

γα′

)

where S = S(x, 0) and Γ = γ0Γ
†γ0
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Baryons

2-point correlator for the Ω− (and ∆++ and ∆− as well):

−ǫabc ǫa
′b′c′ Γαβ (Γ

T
)α′β′ ·

{

Sbb
′

ββ′

(

Saa
′

αα′ Scc
′

γγ′ − Sac
′

αγ′ S
ca′

γα′

)

+Sba
′

βα′

(

−Sab
′

αβ′ Scc
′

γγ′ + Sac
′

αγ′ S
cb′

γβ′

)

+Sbc
′

βγ′

(

−Saa
′

αα′ Scb
′

γβ′ + Sab
′

αβ′ Sca
′

γα′

)
}
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Baryons

2-point correlator for the Ω− (and ∆++ and ∆− as well):

−ǫabc ǫa
′b′c′ Γαβ (Γ

T
)α′β′ ·

{

Sbb
′

ββ′

(

Saa
′

αα′ Scc
′

γγ′ − Sac
′

αγ′ S
ca′

γα′

)

+Sba
′

βα′

(

−Sab
′

αβ′ Scc
′

γγ′ + Sac
′

αγ′ S
cb′

γβ′

)

+Sbc
′

βγ′

(

−Saa
′

αα′ Scb
′

γβ′ + Sab
′

αβ′ Sca
′

γα′

)
}

The extended propagator for a proton when an u quark is attached to the
operator at y is

Σu(0, y)
xy
ρσ = −ǫabc ǫxb

′c′ Γαβ (Γ
T
)ρβ′

(

S
ay

ασ S
bb′

ββ′ Scc
′

γγ′ − S
cy

γσ S
bb′

ββ′ Sac
′

αγ′

)

−ǫabc ǫa
′b′x Γαβ(Γ

T
)α′β′

(

S
cy

γσ S
bb′

ββ′ Saa
′

αα′ − S
ay

ασ S
bb′

ββ′ Sca
′

γα′

)

· δγ′ρ

where S = S(x, 0) and S = S(x, y)
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Baryons

0 x

y

u u

u

d

0 x

y

u

u

d d
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Baryons

0 x

y

u u

u

d

0 x

y

u

u

d

0 x

y

u

u

d d

0 x

y

u

u

d
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Baryons

The corresponding source satisfies

∑

y

Σu(0, y)
xy
ρσM

yz
στ (y, z) = (ηu)

xz
ρτ (0, z)

and is consequently given by

(ηu)
xz
ρτ = −ǫabc ǫxb

′c′ Γαβ (Γ
T
)ρβ′

(

δaz δατ S
bb′

ββ′ Scc
′

γγ′ − δcz δγτ S
bb′

ββ′ Sac
′

αγ′

)

−ǫabc ǫa
′b′x Γαβ (Γ

T
)α′β′

(

δcz δγτ S
bb′

ββ′ Saa
′

αα′ − δaz δατ S
bb′

ββ′ Sca
′

γα′

)

· δγ′ρ

= −ǫzbc ǫxb
′c′ Γτβ (Γ

T
)ρβ′ Sbb

′

ββ′ Scc
′

γγ′

+ǫabz ǫxb
′c′ Γαβ (Γ

T
)ρβ′ Sbb

′

ββ′ Sac
′

αγ′ · δγτ

−ǫabz ǫa
′b′x Γαβ (Γ

T
)α′β′ Sbb

′

ββ′ Saa
′

αα′ · δγ′ρ · δγτ

+ǫzbc ǫa
′b′x Γτβ (Γ

T
)α′β′ Sbb

′

ββ′ Sca
′

γα′ · δγ′ρ
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Baryons

The corresponding source satisfies

∑

y

Σu(0, y)
xy
ρσM

yz
στ (y, z) = (ηu)

xz
ρτ (0, z)

and is consequently given by

(ηu)
xz
ρτ = −ǫabc ǫxb

′c′ Γαβ (Γ
T
)ρβ′

(

δaz δατ S
bb′

ββ′ Scc
′

γγ′ − δcz δγτ S
bb′

ββ′ Sac
′

αγ′

)

−ǫabc ǫa
′b′x Γαβ (Γ

T
)α′β′

(

δcz δγτ S
bb′

ββ′ Saa
′

αα′ − δaz δατ S
bb′

ββ′ Sca
′

γα′

)

· δγ′ρ

= −ǫzbc ǫxb
′c′ Γτβ (Γ

T
)ρβ′ Sbb

′

ββ′ Scc
′

γγ′

+ǫabz ǫxb
′c′ Γαβ (Γ

T
)ρβ′ Sbb

′

ββ′ Sac
′

αγ′ · δγτ

−ǫabz ǫa
′b′x Γαβ (Γ

T
)α′β′ Sbb

′

ββ′ Saa
′

αα′ · δγ′ρ · δγτ

+ǫzbc ǫa
′b′x Γτβ (Γ

T
)α′β′ Sbb

′

ββ′ Sca
′

γα′ · δγ′ρ

Similar formulae hold when it is the d quark to be attached to the operator at y
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Baryons

The corresponding source satisfies

∑

y

Σu(0, y)
xy
ρσM

yz
στ (y, z) = (ηu)

xz
ρτ (0, z)

and is consequently given by

(ηu)
xz
ρτ = −ǫabc ǫxb

′c′ Γαβ (Γ
T
)ρβ′

(

δaz δατ S
bb′

ββ′ Scc
′

γγ′ − δcz δγτ S
bb′

ββ′ Sac
′

αγ′

)

−ǫabc ǫa
′b′x Γαβ (Γ

T
)α′β′

(

δcz δγτ S
bb′

ββ′ Saa
′

αα′ − δaz δατ S
bb′

ββ′ Sca
′

γα′

)

· δγ′ρ

= −ǫzbc ǫxb
′c′ Γτβ (Γ

T
)ρβ′ Sbb

′

ββ′ Scc
′

γγ′

+ǫabz ǫxb
′c′ Γαβ (Γ

T
)ρβ′ Sbb

′

ββ′ Sac
′

αγ′ · δγτ

−ǫabz ǫa
′b′x Γαβ (Γ

T
)α′β′ Sbb

′

ββ′ Saa
′

αα′ · δγ′ρ · δγτ

+ǫzbc ǫa
′b′x Γτβ (Γ

T
)α′β′ Sbb

′

ββ′ Sca
′

γα′ · δγ′ρ

Similar formulae hold when it is the d quark to be attached to the operator at y

All this has been already implemented
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Twisted boundary conditions

On a finite lattice with periodic boundary conditions, a limited number of
discrete momenta:

~p =
2π

aL
~n

The lowest available non-zero momentum is in general already too large: for a
lattice with a = 0.05 fm and L = 64 one gets

√

p2
min ≃ 400 MeV

A severe limitation when one is interested in the physics at low momenta . . .

Need the near-forward region to extract radii (derivative at zero momentum)

One also does not wish to use models for the momentum dependence

Furthermore: there are big gaps between neighboring momenta

Need then a better resolution for form factors, . . . (fit to a function)

We can overcome this limitation by using non-periodic boundary conditions for
the fields

⇒ twisted boundary conditions ( Bedaque; Sachrajda & Villadoro, . . . )
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Twisted boundary conditions

It is not necessary to use periodic boundary conditions – is just simpler

One can choose different boundary conditions, provided that the action

Lψ = ψ(x) (6D +M)ψ(x)

still maintains its single-valuedness

M = diagonal mass matrix (u, d, s, . . .)

Flavor twisted boundary conditions (in the spatial directions):

ψ(x+ Lk̂) = Uk ψ(x) (k = 1, 2, 3)

where the unitary matrices Uk must satisfy

[Uk, 6D] = [Uk,M ] = 0

Uk must then be diagonal :

Uk = eiθk = eiθ
a
kt
a

ta: generators in the Cartan subalgebra of flavor U(N)V which
commutes with M
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Twisted boundary conditions

Redefine

ψ(x) = e
i
θk
L
xk
χ(x) = V (x)χ(x)

where χ(x) now obeys periodic boundary conditions: χ(x+ Lk̂) = χ(x)

In this new variable:

Lχ = χ(x) (6D + V †(x) 6∂ V (x) +M)χ(x) = χ(x) (6Db.c. +M)χ(x)

where
Db.c.
µ = Dµ + iBµ

B is a constant background field: Bµ =
θµ
L

(B0 = 0)

We now work with periodic quark fields coupled to a constant vector field Bµ,
with charges given by the phases in the twisted boundary conditions

Free twisted quark propagator:

Sbc(x, θ) = 〈χ(x)χ(0)〉 =
1

L3

∑

~p= 2π

L
~n

∫
dp0

2π

eipx

i(6p + 6B) +M

→ the quark momentum is now given by

~p =
2π

aL
~n+

~θ

aL GSI – 24.11.2009 – p.17



Twisted boundary conditions

Now, also lower momenta can propagate on the lattice

We can produce a continuous hadron momentum: the momentum transfer
can thus be continuously varied

→ arbitrarily low
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Twisted boundary conditions

Now, also lower momenta can propagate on the lattice

We can produce a continuous hadron momentum: the momentum transfer
can thus be continuously varied

→ arbitrarily low

There is a breaking of isospin symmetry induced by the boundary conditions

The field Bµ breaks cubic symmetry, and also all symmetries which do not
commute with it, like flavor SU(3), I2, . . .

However, it does not break Iz, strangeness and the electric charge
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Twisted boundary conditions

Now, also lower momenta can propagate on the lattice

We can produce a continuous hadron momentum: the momentum transfer
can thus be continuously varied

→ arbitrarily low

There is a breaking of isospin symmetry induced by the boundary conditions

The field Bµ breaks cubic symmetry, and also all symmetries which do not
commute with it, like flavor SU(3), I2, . . .

However, it does not break Iz, strangeness and the electric charge

Flavor twisting produces long-range interactions that modify the physics

This generates finite volume corrections , which can be estimated using chiral
effective theories

Sachrajda & Villadoro (2004), for mesons: these corrections remain
exponentially small with the volume, also in the case of partially twisted
boundary conditions (for quantities without final-state interactions)
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Twisted boundary conditions

Partially twisted boundary conditions: implemented only in the valence sector,
while the sea quarks remain periodic at the boundary

Enormous gain: no need in unquenched simulations to generate new gauge

configurations for each value of ~θ

Furthermore: if the sea quarks u and d are twisted differently, then with fully
twisted boundary conditions one must use lattice fermions for which the
determinant is positive definite for each single flavor
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Twisted boundary conditions

Partially twisted boundary conditions: implemented only in the valence sector,
while the sea quarks remain periodic at the boundary

Enormous gain: no need in unquenched simulations to generate new gauge

configurations for each value of ~θ

Furthermore: if the sea quarks u and d are twisted differently, then with fully
twisted boundary conditions one must use lattice fermions for which the
determinant is positive definite for each single flavor

~θ is diagonal ⇒ π0 commutes with Bµ ⇒ no twist!

For π±: shift in momentum given by

~θu − ~θd
L

Momentum transfer:

~q =
2π

aL
~n+

δ~θ

aL

where now δ~θ is the difference in the twist angles of the flavors changed
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Twisted boundary conditions

Twisting is easy for matrix elements like the transition form factors, where the
initial and final particles are different

p→ n transition:

0 x

y

u(θ1) d(θ2)

u(θ1)

d(θ2)

−→
~θ1 − ~θ2
L
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Twisted boundary conditions

Twisting is easy for matrix elements like the transition form factors, where the
initial and final particles are different

p→ n transition:

0 x

y

u(θ1) d(θ2)

u(θ1)

d(θ2)

−→
~θ1 − ~θ2
L

More complicated, instead, when the final particle is the same as the initial one

For scattering form factors: the active quarks, that couple to the current

insertion, are of the same flavor
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Twisted boundary conditions

Proton form factor:

0 x

y

u(θ1) u(θ2)

u(θ1)

d(θ1)

−→
~θ1 − ~θ2
L

Need then introduce extra fictitious flavors, differing only in their boundary
conditions

However: now the finite volume corrections depend on an unphysical and
unknown parameter, g1 (an artefact of the enlarged valence flavor group)

A lattice calculation of g1 will be necessary to control the systematic
uncertainty from volume effects in this approach
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Twisted boundary conditions

Proton form factor:

0 x

y

u(θ1) u(θ2)

u(θ1)

d(θ1)

−→
~θ1 − ~θ2
L

Need then introduce extra fictitious flavors, differing only in their boundary
conditions

However: now the finite volume corrections depend on an unphysical and
unknown parameter, g1 (an artefact of the enlarged valence flavor group)

A lattice calculation of g1 will be necessary to control the systematic
uncertainty from volume effects in this approach

Other ideas can be useful. . .
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Twisted boundary conditions

For the pion: one can also use isospin symmetry ( Sachrajda et al., 2007 )

The valence strange quark plays no role for the pion form factor → implement
partial quenching with

mV
u = mS

u = mV
d = mS

d = mV
s 6= mS

s = mphys
s

Then, from flavor SU(3) symmetry of the valence quarks one gets

〈π+|uγµu |π
+〉 = −〈π+| dγµd |π

+〉 = 〈π+|uγµs |K̄
0〉

⇒ simulate (and twist) the K → π matrix element

This is then equal to the sought-for pion form factor
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Twisted boundary conditions

For the pion: one can also use isospin symmetry ( Sachrajda et al., 2007 )

The valence strange quark plays no role for the pion form factor → implement
partial quenching with

mV
u = mS

u = mV
d = mS

d = mV
s 6= mS

s = mphys
s

Then, from flavor SU(3) symmetry of the valence quarks one gets

〈π+|uγµu |π
+〉 = −〈π+| dγµd |π

+〉 = 〈π+|uγµs |K̄
0〉

⇒ simulate (and twist) the K → π matrix element

This is then equal to the sought-for pion form factor

For the nucleon: Tiburzi (2006) pointed out that, using vector flavor SU(3) ,

〈p|uγµd |n〉 = 〈p|
2

3
uγµu−

1

3
dγµd |p〉 − 〈n|

2

3
uγµu−

1

3
dγµd |n〉

Also showed that the magnetic form factor can be computed as

〈p(~q)↓ |J1
3 + iJ2

3 |n(~0)↑ 〉 =
−iq

2M
F2(q

2)
(
Jaµ = ψT aγµψ

)
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Twisted boundary conditions

Finite volume corrections: in the case of baryons can become pronounced for
small twist angles (Tiburzi)

They then decrease like powers of the volume, instead of exponentially small
corrections

The same seems to happen for the magnetic contributions

Also: one must use heavy baryon chiral perturbation theory for the study of
these volume corrections
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Twisted boundary conditions

Finite volume corrections: in the case of baryons can become pronounced for
small twist angles (Tiburzi)

They then decrease like powers of the volume, instead of exponentially small
corrections

The same seems to happen for the magnetic contributions

Also: one must use heavy baryon chiral perturbation theory for the study of
these volume corrections

Other drawback (also for mesons) : technique limited only to connected
contributions

Twisted boundary conditions cannot be applied to disconnected diagrams (i.e.,
self-contractions)

Then, for these diagrams 2π/L remains the only option as to the minimum
momentum – no continuous momentum
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Topology

Issue: critical slowing down – especially for the topological charge

Simulations performed as part of the CLS project have revealed a severe case
of critical slowing down in the topological charge

Steep rise of the autocorrelation time as a function of the lattice spacing

It was observed that at β = 5.7 (where a ≈ 0.04 fm) tunnelling between
topological sectors is strongly suppressed

In our simulations at β = 5.5 (run N3) the topological charge is not stuck at
zero, and produces a distribution which is reasonably symmetric

Similar observations were made at the other values of the quark masses used
in our simulations

Thus, unlike the situation encountered at the larger β = 5.7, our topological
charge does not appear to be stuck in a particular sector

The distribution of topological charge is not pathological

While this may be accidental, we can take confidence that the composition of
our ensembles is apparently not strongly biased
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Better interpolating operators

We also investigate the effectiveness of stochastic noise sources and
Jacobi smearing

Point source: the hadron correlators can be quite noisy

an unambiguous identification of the asymptotic behaviour is then quite difficult

Aims :

reduce the level of statistical noise

enhance the spectral weight of the desired state in the spectral
decomposition of the correlator

To enhance and tune the projection onto the ground state of interpolating
operators in a given channel: we have implemented Jacobi smearing,
supplemented by fat link variables (APE or HYP procedure)

Particularly important for baryons

Jacobi smearing: now implemented also at the sink

While we found much better plateaus when using smeared links of either type,
HYP smearing appears to have a slight advantage
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Better interpolating operators

Effective mass plots for the nucleon, with point and HYP-Jacobi sources

Not only the contribution of excited states is reduced – also the plateau
extends to larger timeslices if HYP-Jacobi smearing is applied

Room for further improvement via better tuning of the smearing

parameters
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Better interpolating operators

We have also implemented stochastic noise sources (“all-to-all”), with the
generalised “one-end-trick”

Generalized one-end-trick: choose a spin-diagonal random source vector

The noise source has support only on a particular spin component and
timeslice

For every hit (every choice of random source) one must perform four
inversions (one for each spin component)

Compared with point sources, numerical costs are reduced by a factor three
per hit

In the pion channel we see that random noise sources lead to a significant
enhancement of the statistical signal

A similar improvement is, unfortunately, not observed in the vector channel

For baryons: in order to reach a given statistical accuracy, the numerical effort
is at least as large as for point sources (even with various dilution schemes)

The method does not seem to be useful for the determination of baryonic
ground state masses
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Setting the scale

Setting of the overall scale: using the Ω− baryon

The mass of the Ω− baryon is very well suited for this purpose:

the Ω− is stable in QCD

it contains only strange quarks in the valence sector

⇒ a long chiral extrapolation in the valence quark mass can be avoided

Our simulations are at this moment not yet advanced enough for a reliable
determination of the mass of the Ω−

For the time being we use mK as a reference scale, and need also to
determine the mass of the K⋆-meson (procedure of the CERN group)

K⋆-meson: a vector particle with one s antiquark and one u or d quark
(here: degenerate)

This method seems to work reasonably well
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Setting the scale

SHORT DESCRIPTION:

For a fixed mu, compute mK⋆/mK for a few values of ms

Interpolate (mK⋆/mK)2 as a function of (amK)2 to its physical value
mK⋆/mK = 0.554

Repeat similar determinations of ms for various values of mu

Unfortunately it is not practical to fix mu by extrapolating to the physical value
of mπ/mK

It would require a long extrapolation in mu, and the K⋆ would become
unstable (→ kinematical threshold)

But, noticing that amK is very weakly dependent on mu, we interpolate amK

in mu to the reference point mπ/mK = 0.85

Comparing this amref
K in lattice unit with the physical value mK = 495 MeV ,

we obtain the value of a

In our present lattice: amK = 0.1512(38) ⇒ a = 0.0603(15) fm
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Pion form factor

Andreas Jüttner (N4, absolutely preliminary) :
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Conclusions

Large lattices at fine resolution

They can be simulated efficiently on commodity clusters

In spite of a sharp increase in the autocorrelation time of the topological
charge observed at even smaller lattice spacings: the distributions for this
quantity obtained in our runs are not pathological

We plan to compute several two-and three-point correlation functions for
mesonic and baryonic states

⇒ determine a variety of observables

→ use of twisted boundary conditions

→ look for better interpolating operators

→ in general: improve techniques
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Perspectives

In the longer term:

LOWER THE QUARK MASS

So far our minimum pion mass is about 360 MeV , and mπL ≥ 5

We think that maintaining mπL > 3 is a necessary condition to obtain
significant results

STUDY LARGE VOLUMES

Further lowering the quark mass, in order to access pion masses of less
than 300 MeV would necessitate going to larger lattice sizes, if one
wants to maintain the condition mπL > 3

Planned: L = 3.8 fm

POSTPONE STUDY OF a ≈ 0.04 fm UNTIL TOPOLOGY ISSUE IS BETTER

UNDERSTOOD

With the currently available algorithms, i.e. while a satisfactory solution
to the problem of critical slowing down is still under investigation, it is not
worth investing more effort into the generation of ensembles with
smaller lattice spacings
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