Knowing What You Don't Know: Nuclear Reactions, Effective Field Theory \& Uncertainty Quantification

Daniel Phillips Ohio University
 TU Darmstadt EMMI

TECHNISCHE UNIVERSITA'T DARMSTADT

RESEARCH SUPPORTED BY THE US DOE AND BY EMMI

Hurricane forecasting

http://www.vox.com

Hurricane forecasting

- Forces, e.g., Coriolis
- Conservation laws
- Parameterizations

Hurricane forecasting

- Forces, e.g., Coriolis
- Conservation laws
- Parameterizations
- Need to know initial state accurately (computing!)
- Evolve state forward in time (more computing!)
- Uncertainty quantification

Hurricane forecasting

- Forces, e.g., Coriolis
- Conservation laws
- Parameterizations
- Need to know initial state accurately (computing!)
- Evolve state forward in time (more computing!)
- Uncertainty quantification

Nuclear reactions

$$
i \hbar \frac{\partial|\Psi\rangle}{\partial t}=(\hat{T}+\hat{V})|\Psi\rangle
$$

Nuclear reactions

$$
i \hbar \frac{\partial|\Psi\rangle}{\partial t}=(\hat{T}+\hat{V})|\Psi\rangle
$$

- Forces: electromagnetic, strong nuclear
- Conservation laws, e.g., probability, energy, momentum
- Some parameterizations
- Accurate knowledge of initial state (nuclear structure)
- Computing to evolve state forward in time
- Uncertainty quantification

Outline

- What we do and don't know about the strong nuclear force
- EFT: organizing what we know, constraining what we don't
- EFT truncation errors from a Bayesian analysis: NN scattering
- EFT for halo nuclei: universal formula for $\gamma+A Z \rightarrow A-I Z+n$
- Uncertainty quantification for fusion: ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)$ at solar energies
- Conclusion

The long and the short of hadron physics

M (MeV)

The long and the short of hadron physics

M (MeV)

- Spectrum of QCD bound states

$\mathrm{M}_{\mathrm{N}} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$
$\stackrel{\omega}{\rho} \quad \overline{ } 70$
χ PT
Δ
293
$\pi-138$

The long and the short of hadron physics

M (MeV)

- Spectrum of QCD bound states
- Now understood as consequence of QCD's spontaneously broken chiral symmetry: pions are approximate Goldstone bosons of QCD

$M_{N} \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$.

$\omega=770$

- For probe energies ~a hundred MeV, simplifications of the rich QCD
dynamics emerge: processes dominated by $\pi \mathrm{s}$ (and $\Delta \mathrm{s}$)
Δ
293
π 138

The long and the short of hadron physics

M (MeV)

- Spectrum of QCD bound states
- Now understood as consequence of QCD's spontaneously broken chiral symmetry: pions are approximate Goldstone bosons of QCD
- For probe energies ~a hundred MeV, simplifications of the rich QCD
dynamics emerge: processes dominated by $\pi \mathrm{s}$ (and $\Delta \mathrm{s}$)
- Pion exchange generates longest-range part of NN force
- But short-distance dynamics too
$\omega=770$
ρ

$\mathrm{M}_{\mathrm{N}}{ }^{\ldots . ~} 939$

The NN potential: a cartoon

- Long-range part generated by one-pion exchange
- Intermediate ranges: multiple pion exchange
- Short ranges:"other stuff" exchange
- Needs to be parameterized, then fit to NN scattering data

Effective Field Theory

- Simpler theory that reproduces results of full theory at long distances
- Short-distance details irrelevant for long-distance (low-momentum) physics, e.g. multipole expansion
- Expansion in ratio of physical scales: $p / \Lambda_{b}=\lambda_{b} / r$
- Symmetries of underlying theory limit possibilities: all possible terms up to a given order present in EFT
- Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes
- Examples: standard model, chiral perturbation theory, Halo EFT

Effective Field Theory

- Simpler theory that reproduces results of full theory at long distances
- Short-distance details irrelevant for long-distance (low-momentum) physics, e.g. multipole expansion
- Expansion in ratio of physical scales: $p / \Lambda_{b}=\lambda_{b} / r$
- Symmetries of underlying theory limit possibilities: all possible terms up to a given order present in EFT
- Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes
- Examples: standard model, chiral perturbation theory, Halo EFT Error grows as first omitted term in expansion

χ EFT for nuclear forces

χ EFT for nuclear forces

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

- $\chi \mathrm{PT} \Rightarrow$ pion interactions are weak at low energy. Weinberg (1990), apply χ PT to V, i.e. expand it in $\mathrm{x}=\mathrm{p} / \wedge_{\mathrm{b}}$

$$
\begin{gathered}
\left(E-H_{0}\right)|\psi\rangle=V|\psi\rangle \\
V=V^{(0)}+V^{(2)}+V^{(3)}+\ldots
\end{gathered}
$$

χ EFT for nuclear forces

Ordonez，Ray，van Kolck（1996）；Epelbaum，Meissner，Gloeckle（1999）；Entem，Machleidt（2001）
－$\chi \mathrm{PT} \Rightarrow$ pion interactions are weak at low energy． Weinberg（1990），apply $\chi \mathrm{PT}$ to V ，i．e．expand it in $\mathrm{x}=\mathrm{p} / \wedge_{\mathrm{b}}$

$$
\left(E-H_{0}\right)|\psi\rangle=V|\psi\rangle
$$

${ }^{*}$	XH	－	
${ }^{*}$	Xhatit	consiste	nt
${ }^{*}$	dod	HHHX＊	
	$x \text { 性相 }$ 	HAHAX	H⿰木木⿴⿱冂一⿱一一厶儿洲

2 nucleon force $\gg 3$ nucleon force $\gg 4$ nucleon force ．．．

Behavior of a χ EFT series

Behavior of a χ EFT series

- Expansion in $m_{\pi} /\left(M_{\Delta}-M_{N}\right) \simeq 0.4$
- For proton electric polarizability, $\chi \mathrm{PT} \Rightarrow \alpha_{\mathrm{E} 1}^{(p)}=12.5-2.3+1.5=11.7$
- What is the theoretical uncertainty of this result, Δ_{2} ?

Behavior of a χ EFT series

- Expansion in $m_{\pi} /\left(M_{\Delta}-M_{N}\right) \simeq 0.4$
- For proton electric polarizability, $\chi \mathrm{PT} \Rightarrow \alpha_{\mathrm{E} 1}^{(p)}=12.5-2.3+1.5=11.7$
- What is the theoretical uncertainty of this result, Δ_{2} ?
- Rewrite as $\alpha_{\mathrm{E} 1}^{(p)}=\alpha_{\mathrm{LO}}\left[1+c_{1}(0.4)+c_{2}(0.4)^{2}+c_{3}(0.4)^{3}\right]$
- We cannot know the result for c_{3} before we compute it
- Two questions:
- What is expectation for c_{3} before we know c_{0}, c_{1}, c_{2} ?
- In fact $\left\{c_{n}\right\}=\{1,-0.46,0.75\}$. What then is expectation for c_{3} ?

Behavior of a χ EFT series

- Expansion in $m_{\pi} /\left(M_{\Delta}-M_{N}\right) \simeq 0.4$
- For proton electric polarizability, $\chi \mathrm{PT} \Rightarrow \alpha_{\mathrm{E} 1}^{(p)}=12.5-2.3+1.5=11.7$
- What is the theoretical uncertainty of this result, Δ_{2} ?
- Rewrite as $\alpha_{\mathrm{E} 1}^{(p)}=\alpha_{\mathrm{LO}}\left[1+c_{1}(0.4)+c_{2}(0.4)^{2}+c_{3}(0.4)^{3}\right]$
- We cannot know the result for c_{3} before we compute it
- Two questions:
- What is expectation for c_{3} before we know c_{0}, c_{1}, c_{2} ?

Updating

- In fact $\left\{c_{n}\right\}=\{1,-0.46,0.75\}$. What then is expectation for c_{3} ?
- One possibility: $c_{3}=\max \left\{\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}\right\}$

Bayesian tools

Thomas Bayes (1701?-1761)

$$
\operatorname{pr}(A \mid B, I)=\frac{\operatorname{pr}(B \mid A, I) \operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}
$$

http://www.bayesian-inference.com

Bayesian tools

Thomas Bayes (1701?-1761)

http://www.bayesian-inference.com
Probability as degree of belief

$$
\operatorname{pr}(A \mid B, I)=\frac{\operatorname{pr}(B \mid A, I) \operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}
$$

Likelihood Prior

$$
\operatorname{pr}(x \mid \text { data }, I)=\frac{\operatorname{pr}(\text { data } \mid x, I) \operatorname{pr}(x \mid I)}{\operatorname{pr}(\text { data } \mid I)}
$$

Normalization

Bayesian tools

Thomas Bayes (1701?-1761)

http://www.bayesian-inference.com
Probability as degree of belief

$$
\operatorname{pr}(A \mid B, I)=\frac{\operatorname{pr}(B \mid A, I) \operatorname{pr}(A \mid I)}{\operatorname{pr}(B \mid I)}
$$

Likelihood Prior \downarrow

$$
\operatorname{pr}(x \mid \text { data }, I)=\frac{\operatorname{pr}(\text { data } \mid x, I) \operatorname{pr}(x \mid I)}{\operatorname{pr}(\text { data } \mid I)}
$$

Normalization

Marginalization: $\operatorname{pr}(x \mid$ data,$I)=\int d y \operatorname{pr}(x, y \mid$ data,$I)$
Allows us to integrate out "nuisance" (e.g. higher-order) parameters

Probability for EFT coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011

Probability for EFT coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011

- General EFT series for observable to order k: $X=X_{0} \sum_{i=0}^{k} c_{i} x^{i}$
- Compute conditional probability distribution: $\operatorname{pr}\left(\mathrm{c}_{\mathrm{k}+1} \mid \mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{k}}, \mathrm{l}\right)$
- I=information about EFT, e.g. naturalness

Probability for EFT coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011

- General EFT series for observable to order k: $X=X_{0} \sum_{i=0}^{k} c_{i} x^{i}$
- Compute conditional probability distribution: $\operatorname{pr}\left(\mathrm{c}_{\mathrm{k}+1} \mid \mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{k}}, \mathrm{l}\right)$
- I=information about EFT, e.g. naturalness
- "Prior $\mathrm{A}^{\prime \prime}: \operatorname{pr}\left(c_{n} \mid \bar{c}\right)=\frac{1}{2 \bar{c}} \theta\left(\bar{c}-c_{n}\right) ; \operatorname{pr}(\bar{c})=\frac{1}{2 \ln (\epsilon) \bar{c}} \theta\left(\frac{1}{\epsilon}-\bar{c}\right) \theta(\bar{c}-\epsilon)$
- Prior expectations will guide result, but they are not be all and end all; maximum of coefficients informed by known coefficients

Probability for EFT coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011

- General EFT series for observable to order k: $X=X_{0} \sum_{i=0}^{k} c_{i} x^{i}$
- Compute conditional probability distribution: $\operatorname{pr}\left(\mathrm{c}_{\mathrm{k}+1} \mid \mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{k}}, \mathrm{l}\right)$
- I=information about EFT, e.g. naturalness
- "Prior $A ": \operatorname{pr}\left(c_{n} \mid \bar{c}\right)=\frac{1}{2 \bar{c}} \theta\left(\bar{c}-c_{n}\right) ; \operatorname{pr}(\bar{c})=\frac{1}{2 \ln (\epsilon) \bar{c}} \theta\left(\frac{1}{\epsilon}-\bar{c}\right) \theta(\bar{c}-\epsilon)$
- Prior expectations will guide result, but they are not be all and end all; maximum of coefficients informed by known coefficients
Result: $\operatorname{pr}\left(c_{k+1} \mid c_{0}, c_{1}, \ldots, c_{k}\right) \propto \begin{cases}1 & \text { if } c_{k+1}<c_{\max } \\ \left(\frac{c_{\max }}{c_{k+1}}\right)^{k+2} & \text { if } c_{k+1}>c_{\max }\end{cases}$

$$
\left[-c_{\max } X_{0} x^{k+1}, c_{\max } X_{0} x^{k+1}\right] \text { is a } \frac{k+1}{k+2} * 100 \% \text { DoB interval }
$$

Probability for EFT coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011

- General EFT series for observable to order k: $X=X_{0} \sum_{i=0}^{k} c_{i} x^{i}$
- Compute conditional probability distribution: $\operatorname{pr}\left(\mathrm{c}_{\mathrm{k}+1} \mid \mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{k}}, \mathrm{l}\right)$
- I=information about EFT, e.g. naturalness
- "Prior $\mathrm{A} ": \operatorname{pr}\left(c_{n} \mid \bar{c}\right)=\frac{1}{2 \bar{c}} \theta\left(\bar{c}-c_{n}\right) ; \operatorname{pr}(\bar{c})=\frac{1}{2 \ln (\epsilon) \bar{c}} \theta\left(\frac{1}{\epsilon}-\bar{c}\right) \theta(\bar{c}-\epsilon)$
- Prior expectations will guide result, but they are not be all and end all; maximum of coefficients informed by known coefficients

NN scattering cross sections

- NN cross section at $T_{l a b}=50,96$, I43, 200 MeV
- Potential regulated by local function, parameterized by R.

$$
\sigma_{n p}\left(E_{\mathrm{lab}}\right)=\sigma_{\mathrm{LO}} \sum_{n=0}^{k} c_{n}\left(p_{\mathrm{rel}}\right)\left(\frac{p_{\mathrm{rel}}}{\Lambda_{b}}\right)^{n}
$$ Here: $\mathrm{R}=0.9 \mathrm{fm}$ data

- Results at LO, NLO, N2LO,

$$
x=\frac{p_{\mathrm{rel}}}{\Lambda_{b}}
$$

EKM state $\mathrm{N}^{3} \mathrm{LO}, \mathrm{N}^{4} \mathrm{LO}(\mathrm{k}=0,2,3,4,5)$

NN scattering cross sections

- NN cross section at $T_{\text {lab }}=50,96$, I43, 200 MeV
- Potential regulated by local function, parameterized by R.

$$
\sigma_{n p}\left(E_{\mathrm{lab}}\right)=\sigma_{\mathrm{LO}} \sum_{n=0}^{k} c_{n}\left(p_{\mathrm{rel}}\right)\left(\frac{p_{\mathrm{rel}}}{\Lambda_{b}}\right)^{n}
$$ Here: $\mathrm{R}=0.9 \mathrm{fm}$ data

- Results at LO, NLO, N2LO,

$$
x=\frac{p_{\mathrm{rel}}}{\Lambda_{b}}
$$

EKM state $\mathrm{N}^{3} \mathrm{LO}, \mathrm{N}^{4} \mathrm{LO}(\mathrm{k}=0,2,3,4,5)$

Results

Results

The well-calibrated EFTist

The well-calibrated EFTist

Accuracy of three weather forecasting services

[^0]
The well-calibrated EFTist

Furnstahl, Klco, DP, Wesolowski, PRC, 2015 after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

- Now we consider predictions at each order, with their error bars, as data and test them to see if the procedure is consistent
- Fix a given DOB interval, compute actual success ratio and compare
- Look at this over EKM predictions at four different orders and four different energies
- Interpret in terms of rescaling of Λ_{b} by a factor λ

The well-calibrated EFTist

Furnstahl, Klco, DP, Wesolowski, PRC, 2015 after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

- Now we consider predictions at each order, with their error bars, as data and test them to see if the procedure is consistent
- Fix a given DOB interval, compute actual success ratio and compare
- Look at this over EKM predictions at four different orders and four different energies
- Interpret in terms of rescaling of Λ_{b} by a factor λ

No evidence for significant rescaling of Λ_{b}

Outline

- What we do and don't know about the strong nuclear force $\sqrt{ }$
- EFT: organizing what we know, constraining what we don't
- EFT truncation errors from a Bayesian analysis: NN scattering $\sqrt{ }$

EFT for halo nuclei: universal formula for $\gamma+A Z \rightarrow A-I Z+n$

- Uncertainty quantification for fusion: ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)$ at solar energies
- Conclusion

Ordinary vs. halo nuclei

Ordinary vs. halo nuclei

- In nuclei, each nucleon moves in the potential generated by the others
- The nuclear size grows as $\mathrm{A}^{1 / 3}$; cross sections like A ${ }^{2 / 3}$

http://alternativephysics.org
- Nuclear binding energies are on the order of $8 \mathrm{MeV} /$ nucleon

Ordinary vs. halo nuclei

Ordinary vs. halo nuclei

- Halo nuclei: the last few nucleons "orbit" far from the nuclear "core"
- Characterized by small nucleon binding energies, large radii, large interaction cross sections, large EI transition strengths.

Halo nuclei: examples

Halo nuclei: examples

Halo EFT

Halo EFT

- Define $R_{\text {halo }}=<r^{2>1 / 2}$. Seek EFT expansion in $R_{\text {corel }} / R_{\text {halo }}$. Valid for $\lambda \leqslant R_{\text {halo }}$
- Typically $R \equiv R_{\text {core }} \sim 2$ fm. And since $\left\langle r^{2\rangle}\right.$ is related to the neutron separation energy we are looking for systems with neutron separation energies of orderl MeV or less
- By this definition the deuteron is the lightest halo nucleus, and the pionless EFT for few-nucleon systems is a specific case of Halo EFT

Predicting dissociation

$$
\begin{array}{cl}
\mathcal{M}=\frac{e Z g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}-\frac{\mathbf{k}}{A}\right)^{2}} & \gamma_{0}=\sqrt{2 m_{R} S_{1 n}} \\
\mathrm{E} 1 \propto \int_{0}^{\infty} d r j_{1}(p r) r u_{0}(r) ; & u_{0}(r)=A_{0} e^{-\gamma_{0} r}
\end{array}
$$

Chen, Savage (1999)

Predicting dissociation

- Leading order: no $\mathrm{FSI} \Rightarrow \gamma_{0}$ is only free parameter $=0.16 \mathrm{fm}^{-1}$ for ${ }^{19} \mathrm{C}$

$$
\begin{aligned}
\mathcal{M}=\frac{e Z g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}-\frac{\mathbf{k}}{A}\right)^{2}} & \gamma_{0}=\sqrt{2 m_{R} S_{1 n}} \\
\mathrm{E} 1 \propto \int_{0}^{\infty} d r j_{1}(p r) r u_{0}(r) ; & u_{0}(r)=A_{0} e^{-\gamma_{0} r}
\end{aligned}
$$

Predicting dissociation

- Leading order: no $\mathrm{FSI} \Rightarrow \gamma_{0}$ is only free parameter $=0.16 \mathrm{fm}^{-1}$ for ${ }^{19} \mathrm{C}$

$$
\mathcal{M}=\frac{e Z g_{0} 2 m_{R}}{\gamma_{0}^{2}+\left(\mathbf{p}-\frac{\mathbf{k}}{A}\right)^{2}} \quad \begin{aligned}
\gamma_{0} & =\sqrt{2 m_{R} S_{1 n}} \\
& p=\sqrt{2 m_{R} E}
\end{aligned}
$$

$\mathrm{E} 1 \propto \int_{0}^{\infty} d r j_{1}(p r) r u_{0}(r) ; \quad u_{0}(r)=A_{0} e^{-\gamma_{0} r}$

$$
\frac{d B(E 1)}{e^{2} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z^{2}}{A^{2}} A_{0}^{2} \frac{p^{3}}{\left(\gamma_{0}^{2}+p^{2}\right)^{2}}
$$

Chen, Savage (1999)

Universal EI strength formula for S-wave halos

- Final-state interactions suppressed by ($\left.\mathrm{R}_{\text {core }} / \mathrm{R}_{\text {halo }}\right)^{3}$
- Short-distance piece of EI m.e.: $L_{E 1} \sigma^{\dagger} \mathbf{E} \cdot(n \stackrel{\leftrightarrow}{\nabla} c)+$ h.c. $\sim\left(\frac{R_{\text {core }}}{R_{\text {halo }}}\right)^{4}$

Results

Results

Data: Nakamura et al., 1999, 2003; Fukuda et al., 2004
Analysis: Acharya, Phillips, 2013; Hammer, Ji, Phillips, 2017

Results

Data: Nakamura et al., 1999, 2003; Fukuda et al., 2004
Analysis: Acharya, Phillips, 2013; Hammer, Ji, Phillips, 2017

Results

Data: Nakamura et al., 1999, 2003; Fukuda et al., 2004
Analysis: Acharya, Phillips, 2013; Hammer, Ji, Phillips, 2017

Results

Data: Nakamura et al., 1999, 2003;
Fukuda et al., 2004
Analysis: Acharya, Phillips, 2013;
Hammer, Ji, Phillips, 2017

Determine S -wave ${ }^{18} \mathrm{C}-\mathrm{n}$ scattering parameters $\Leftrightarrow{ }^{19} \mathrm{C}$ ANC from dissociation data.

Results

Why is ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)$ important?

Why is ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)$ important?

- Part of pp chain (pplli)
- Key for predictions flux of solar neutrinos, especially high-energy $\left({ }^{8} \mathrm{~B}\right)$ neutrinos
- Accurate knowledge of $7 \mathrm{Be}(\mathrm{p}, \gamma)$ needed for inferences from solar-neutrino flux regarding chemical composition of Sun \rightarrow solar-system formation history
- $S(0)=20.8 \pm 0.7 \pm 1.4 \mathrm{eV} \mathrm{b}$ "SFII": Adelberger et al. (2010)

Capture to p-wave halo in EFT

Hammer \& DP, NPA (2011)

- At LO: p-wave In halo described solely by its ANC and binding energy

$$
u_{1}(r)=A_{1} \exp \left(-\gamma_{1} r\right)\left(1+\frac{1}{\gamma_{1} r}\right)
$$

- Capture to the p-wave state proceeds via the one-body EI operator: "external direct capture"

$$
\mathrm{E} 1 \propto \int_{0}^{\infty} d r u_{0}(r) r u_{1}(r) ; \quad u_{0}(r)=1-\frac{r}{a}
$$

- NLO: piece of the amplitude representing capture at short distances, represented by a contact operator \Rightarrow there is an LEC that must be fit

NLO for ${ }^{7 B e}(p, \gamma)$

Zhang, Nollett, Phillips, PRC (2014) cf. Ryberg, Forssen, Hammer, Platter, EPJA (2014) Zhang, Nollett, Phillips, PLB (2015); PRC (2018)

- LO calculation: ISI in S=2 \& S=I into p-wave bound state. Scattering wave functions are linear combinations of Coulomb wave functions F_{0} and G_{0}. Bound state wave function=the appropriate Whittaker function
- We also incorporate a low-lying excited state (I/2-) in ${ }^{7} \mathrm{Be}$
- NLO: piece of the amplitude representing capture at short distances, represented by a contact operator \Rightarrow there is an LEC that must be fit
$S(E)=f(E) \sum_{s} C_{s}^{2}\left[\left|\mathcal{S}_{\mathrm{EC}}\left(E ; \delta_{s}(E)\right)+\bar{L}_{s} \mathcal{S}_{\mathrm{SD}}\left(E ; \delta_{s}(E)\right)+\epsilon_{s} \mathcal{S}_{\mathrm{CX}}\left(E ; \delta_{s}(E)\right)\right|^{2}+|\mathcal{D}(E)|^{2}\right]$
- $A N C s$ in ${ }^{5} P_{2}$ and ${ }^{3} P_{2}: A_{5 P 2}$ and $A_{3 P 2}$

Four parameters at LO; five more at NLO

- Scattering lengths and effective ranges in both ${ }^{5} \mathrm{~S}_{2}$ and ${ }^{3} \mathrm{~S}_{1}: \mathrm{a}_{2}, r_{2}$ and a_{1}, r_{1}
- Core excitation: determined by ratio of ${ }^{8} \mathrm{~B}$ couplings of ${ }^{7} \mathrm{Be}{ }^{*} \mathrm{p}$ and ${ }^{7} \mathrm{Be}-\mathrm{p}$ states: $\epsilon_{।}$
- LECs associated with contact interaction, one each for $S=I$ and $S=2: L_{1}$ and L_{2}

Extrapolation to zero energy

Zhang, Nollett, DP, PLB, 2015; arXiv:1708.04017

$$
\operatorname{pr}(\bar{F} \mid D ; T ; I)=\int \operatorname{pr}\left(\vec{g},\left\{\xi_{i}\right\} \mid D ; T ; I\right) \delta(\bar{F}-F(\vec{g})) d \xi_{1} \ldots d \xi_{5} d \vec{g}
$$

Extrapolation to zero energy

Zhang, Nollett, DP, PLB, 2015; arXiv:1708.04017

$$
\operatorname{pr}(\bar{F} \mid D ; T ; I)=\int \operatorname{pr}\left(\vec{g},\left\{\xi_{i}\right\} \mid D ; T ; I\right) \delta(\bar{F}-F(\vec{g})) d \xi_{1} \ldots d \xi_{5} d \vec{g}
$$

Extrapolation to zero energy

Zhang, Nollett, DP, PLB, 2015; arXiv:1708.0401\%

$$
\operatorname{pr}(\bar{F} \mid D ; T ; I)=\int \operatorname{pr}\left(\vec{g},\left\{\xi_{i}\right\} \mid D ; T ; I\right) \delta(\bar{F}-F(\vec{g})) d \xi_{1} \ldots d \xi_{5} d \vec{g}
$$

$$
S(0)=21.33_{-0.69}^{+0.66} \mathrm{eV} \mathrm{~b}
$$

No N2LO corrections
Also assessed impact of $\mathrm{N}^{3} \mathrm{LO}$ contact operator

Extrapolation to zero energy

Zhang, Nollett, DP, PLB, 2015; arXiv:1708.04017

$$
\operatorname{pr}(\bar{F} \mid D ; T ; I)=\int \operatorname{pr}\left(\vec{g},\left\{\xi_{i}\right\} \mid D ; T ; I\right) \delta(\bar{F}-F(\vec{g})) d \xi_{1} \ldots d \xi_{5} d \vec{g}
$$

$$
S(0)=21.33_{-0.69}^{+0.66} \mathrm{eV} \mathrm{~b}
$$

No N2LO corrections
Also assessed impact of N3LO contact operator

Some remaining uncertainty due to ${ }^{8} \mathrm{~B} \mathrm{~S}_{\text {Ip }}$

Uncertainty reduced by factor of two: model selection

Ongoing work along these lines

- Simultaneous fit to ${ }^{7 B} e^{+} p$ scattering data: requires inclusion of resonances (TRIUMF experiment)
- Same techniques applied to ${ }^{3} \mathrm{He}\left({ }^{4} \mathrm{He}, \gamma\right)$
- Coulomb dissociation: better reaction theory and connection to $a b$ initio structure
- Rotational states as explicit degrees of freedom

Brown, Hale, Paris
Poudel, Zhang, DP

Vaghani, Higa, Rupak
Zhang, Nollett, DP

Capel, Hammer, DP

- Gaussian process models for ChiEFT truncation errors

Melendez, Furnstahl, DP, Wesolowski

- ChiEFT truncation errors in nuclear \& neutron matter

Drischler, Melendez, Furnstahl, DP

- Parameter estimation for 3NFs

One thing is certain....

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties involved in the measurements....

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations..... There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation....However, there is a broad class of papers where estimates of theoretical uncertainties can and should be made.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.
2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental measurements.
3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

Physical Review A Editorial, 29 April 201 I

One thing is certain....

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties involved in the measurements....

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations..... There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation....However, there is a broad class of papers where estimates of theoretical uncertainties can and should be made.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.
2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental measurements.
3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

Physical Review A Editorial, 29 April 201 I

Bayesian Uncertainty Quantification: Errors for Your EFT

BUQEYE collaboration

One thing is certain....

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties involved in the measurements....

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations..... There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation....However, there is a broad class of papers where estimates of theoretical uncertainties can and should be made.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.
2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental measurements.
3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

BUQEYE collaboration

Bayesian Uncertainty Quantification: Errors for Your EFT

EMMI workshop: ISNET-6, Uncertainty Quantification at the Extremes

References

- "A recipe for EFT uncertainty quantification in nuclear physics", R. J, Furnstahl, D. R. Phillips, S.Wesolowski, J. Phys, G 42, 034028 (2014).
- "Quantifying truncation errors in effective field theory", R. J, Furnstahl, N. Klco, D. R. Phillips, S.Wesolowski, Phys. Rev. C 92, 024005 (2015);"Bayesian truncation errors in chiral EFT: nucleon-nucleon observables", J. Melendez, S.Wesolowski, R. J. Furnstahl, Phys. Rev. C 96, 024003 (2017).
- "Bayesian parameter estimation for effective field theories", S.Wesolowski, N. Klco, R.J. Furnstahl, D. R. Phillips, A. Thapaliya, J. Phys G 43, 07400 (2016);"Exploring Bayesian Parameter Estimation for ChiEFT using NN phase shifts", S.Wesolowski, R. J. Furnstahl, J. Melendez, D. R. Phillips, arXiv: I 808.082 I I
- "Halo effective field theory constrains the solar 7Be + ${ }^{7} \rightarrow 8 \mathrm{~B}+\gamma$ rate", X. Zhang, K. Nollett, D. R. Phillips, Phys. Lett. B75 I, 535 (2015); "Models, measurement and EFT: proton capture on ${ }^{7} \mathrm{Be}$ at NLO", Phys. Rev. C 98, 034616 (2018).
- "Effective field theory for halo nuclei", H.-W. Hammer, C. Ji, D. R. Phillips, Topical Review for J. Phys. G 44, 103002 (20I7).

Backup Slides

A Generic EFT

$$
g(x)=\sum_{i=0}^{k} \mathcal{A}_{i}(x) x^{i} \quad x=\frac{p}{\Lambda_{b}}
$$

A Generic EFT

- Suppose we are interested in a quantity as a function of a momentum, p, that is small compared to some high scale, Λ_{b}.
- EFT expansion for quantity is $g(x)=\sum_{i=0}^{k} \mathcal{A}_{i}(x) x^{i} \quad x=\frac{p}{\Lambda_{b}}$

A Generic EFT

- Suppose we are interested in a quantity as a function of a momentum, p, that is small compared to some high scale, Λ_{b}.
- EFT expansion for quantity is $g(x)=\sum_{i=0}^{k} \mathcal{A}_{i}(x) x^{i} \quad x=\frac{p}{\Lambda_{b}}$

$$
\mathcal{A}_{i}(x)=a_{i}(\mu)+f_{i}(x, \mu) \quad a_{i}, f_{i}=\mathcal{O}(1) \text { for } \mu \sim \Lambda_{b}, x \sim 1
$$

A Generic EFT

- Suppose we are interested in a quantity as a function of a momentum, p, that is small compared to some high scale, Λ_{b}.
- EFT expansion for quantity is $g(x)=\sum_{i=0}^{k} \mathcal{A}_{i}(x) x^{i} \quad x=\frac{p}{\Lambda_{b}}$

$$
\mathcal{A}_{i}(x)=a_{i}(\mu)+f_{i}(x, \mu) \quad a_{i}, f_{i}=\mathcal{O}(1) \text { for } \mu \sim \Lambda_{b}, x \sim 1
$$

- $f_{i}(x, \mu)$ is a calculable function, that encodes IR physics at order i
- a_{i} is a low-energy constant (LEC): encodes UV physics at order i. Must be fit to data
- Complications: multiple light scales, multiple functions at a given order, skipped orders,

Bayes \rightarrow Result

Bayes \rightarrow Result

- Bayes theorem: $\operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots, c_{k}\right)=\frac{\operatorname{pr}\left(c_{0}, c_{1}, \ldots, c_{k} \mid \bar{c}\right) \operatorname{pr}(\bar{c})}{\operatorname{pr}\left(c_{0}, c_{1}, \ldots, c_{k}\right)}$
$=\mathcal{N} \operatorname{pr}(\bar{c}) \prod_{n=0}^{k} \operatorname{pr}\left(c_{n} \mid \bar{c}\right)$

Bayes \rightarrow Result

- Bayes theorem: $\operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots, c_{k}\right)=\frac{\operatorname{pr}\left(c_{0}, c_{1}, \ldots, c_{k} \mid \bar{c}\right) \operatorname{pr}(\bar{c})}{\operatorname{pr}\left(c_{0}, c_{1}, \ldots, c_{k}\right)}$

$$
=\mathcal{N} \operatorname{pr}(\bar{c}) \Pi_{n=0}^{k} \operatorname{pr}\left(c_{n} \mid \bar{c}\right)
$$

- Marginalization:

$$
\operatorname{pr}\left(c_{k+1} \mid c_{0}, c_{1}, \ldots, c_{k}\right)=\int_{0}^{\infty} d \bar{c} \operatorname{pr}\left(c_{k+1} \mid \bar{c}\right) \operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots c_{k}\right)
$$

Bayes \rightarrow Result

- Bayes theorem: $\operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots, c_{k}\right)=\frac{\operatorname{pr}\left(c_{0}, c_{1}, \ldots, c_{k} \mid \bar{c}\right) \operatorname{pr}(\bar{c})}{\operatorname{pr}\left(c_{0}, c_{1}, \ldots, c_{k}\right)}$

$$
=\mathcal{N} \operatorname{pr}(\bar{c}) \prod_{n=0}^{k} \operatorname{pr}\left(c_{n} \mid \bar{c}\right)
$$

- Marginalization:

$$
\operatorname{pr}\left(c_{k+1} \mid c_{0}, c_{1}, \ldots, c_{k}\right)=\int_{0}^{\infty} d \bar{c} \operatorname{pr}\left(c_{k+1} \mid \bar{c}\right) \operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots c_{k}\right)
$$

- This is generic, but the integrals are simple in the case of "Prior A"

$$
\begin{aligned}
& \operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots, c_{k}\right) \propto \begin{cases}0 & \text { if } \bar{c}<\max \left\{c_{0}, \ldots, c_{k}\right\} \\
1 / \bar{c}^{k+2} & \text { if } \bar{c}>\max \left\{c_{0}, \ldots, c_{k}\right\}\end{cases} \\
& \operatorname{pr}\left(c_{k+1} \mid c_{0}, c_{1}, \ldots, c_{k}\right) \propto \begin{cases}1 & \text { if } c_{k+1}<c_{\max } \\
\left(\frac{c_{\max }}{c_{k+1}}\right)^{k+2} & \text { if } c_{k+1}>c_{\max }\end{cases}
\end{aligned}
$$

I don't like THAT prior!

- Modify Set A to restrict cbar to a finite range, e.g. $A_{[0.25,4]}$
- Set B: give cbar a log-normal prior: $\operatorname{pr}(\bar{c})=\frac{1}{\sqrt{2 \pi} \bar{c} \sigma} e^{-(\log \bar{c})^{2} / 2 \sigma^{2}}$
- Set $\mathrm{C}: \operatorname{pr}\left(c_{n} \mid \bar{c}\right)=\frac{1}{\sqrt{2 \pi} \bar{c}} e^{-c_{n}^{2} / 2 \bar{c}^{2}} ; \operatorname{pr}(\bar{c}) \propto \frac{1}{\bar{c}} \theta\left(\bar{c}-\bar{c}_{<}\right) \theta\left(\bar{c}_{>}-\bar{c}\right)$
- Same formulas as before can be invoked. Now numerical.

$$
\begin{gathered}
\operatorname{pr}\left(c_{k+1} \mid c_{0}, c_{1}, \ldots, c_{k}\right)=\int_{0}^{\infty} d \bar{c} \operatorname{pr}\left(c_{k+1} \mid \bar{c}\right) \operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots c_{k}\right) \\
\operatorname{pr}\left(\bar{c} \mid c_{0}, c_{1}, \ldots, c_{k}\right)=\mathcal{N} \operatorname{pr}(\bar{c}) \Pi_{n=0}^{k} \operatorname{pr}\left(c_{n} \mid \bar{c}\right)
\end{gathered}
$$

- You don't like these? Pick your own and follow the rules...
- First omitted term approximation

Coulomb dissociation of halo nuclei

Bertulani, arXiv:0908.4307

- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics

Coulomb dissociation of halo nuclei

- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics

- Coulomb excitation dissociation cross section (p.v. b>> $R_{\text {target }}$)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $n_{\pi L}\left(E_{\gamma}, b\right)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus.

Coulomb dissociation of halo nuclei

Bertulani, arXiv:0908.4307

- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus
- Do with different Z, different nuclear sizes, different energies to test systematics

- Coulomb excitation dissociation cross section (p.v. b>> $R_{\text {target }}$)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $n_{\pi L}\left(E_{\gamma}, b\right)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus.
- $\sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)$ can then be extracted: it's the (total) cross section for dissociation of the nucleus due to the impact of photons of multipolarity πL.

The multi-dimensional Halo EFT space

Lagrangian for s - and p -wave states

$$
\begin{aligned}
& \text { s-wave: Kaplan, Savage, Wise (1998); van Kolck } \\
& \text { (1999); Birse, Richardosn, McGovern 1999) } \\
& \mathcal{L}=c^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M}\right) c+n^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) n \\
& +\sigma^{\dagger}\left[\eta_{0}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{0}\right] \sigma+\pi_{j}^{\dagger}\left[\eta_{1}\left(i \partial_{t}+\frac{\nabla^{2}}{2 M_{n c}}\right)+\Delta_{1}\right] \pi_{j} \\
& -g_{0}\left[\sigma n^{\dagger} c^{\dagger}+\sigma^{\dagger} n c\right]-\frac{g_{1}}{2}\left[\pi_{j}^{\dagger}\left(n i \overleftrightarrow{\nabla}_{j} c\right)+\left(c^{\dagger} i \overleftrightarrow{\nabla}_{j} n^{\dagger}\right) \pi_{j}\right] \\
& -\frac{g_{1}}{2} \frac{M-m}{M_{n c}}\left[\pi_{j}^{\dagger} i \vec{\nabla}_{j}(n c)-i \stackrel{\leftrightarrow}{\nabla}_{j}\left(n^{\dagger} c^{\dagger}\right) \pi_{j}\right]+\ldots,
\end{aligned}
$$

- c, n:"core","neutron" fields. c: boson, n: fermion
- σ, π_{j} : S-wave and P-wave fields
- Minimal substitution generates leading EM couplings

One-slide p-wave review

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

One-slide p-wave review

- For a short-ranged potential, if $\mathrm{kR} \leq 1$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

One-slide p-wave review

- For a short-ranged potential, if $\mathrm{kR} \leq 1$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

- "Natural case" $a_{1} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$

One-slide p-wave review

- For a short-ranged potential, if $k R \lesssim 1$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

- "Natural case" $a_{\perp} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$
- But what if there is a low-energy p-wave resonance?

One-slide p-wave review

- For a short-ranged potential, if $k R \lesssim 1$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

- "Natural case" $a_{1} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$
- But what if there is a low-energy p-wave resonance?
- Causality says $r_{1} \leqslant-I / R$

One-slide p-wave review

- For a short-ranged potential, if $k R \lesssim 1$:

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{6 \pi}{m_{R}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{-\frac{1}{a_{1}}+\frac{1}{2} r_{1} k^{2}-i k^{3}}
$$

- "Natural case" $a_{\perp} \sim R^{3} ; r_{1} \sim I / R . \Rightarrow t_{1} \sim R^{3} k^{2}$, so small cf. $t_{0} \sim I / k\left(N^{3} L O\right)$
- But what if there is a low-energy p-wave resonance?
- Causality says $r_{1} \leqslant-I / R$
- So low-energy resonance/bound state would seem to have to arise due to cancellation between $-\mathrm{I} / \mathrm{a}$ । and $\mathrm{I} / 2 \mathrm{r}, \mathrm{k}^{2}$ terms.
- $a_{I} \sim R / M_{10}{ }^{2}$ gives $k_{R} \sim M_{l o}$

Dressing the p-wave state

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolek (2003)

- Proceed similarly for p-wave state as for s-wave state

- Here both Δ_{I} and g_{I} are mandatory for renormalization at LO

$$
\Sigma_{\pi}(p)=-\frac{m_{R} g_{1}^{2} k^{2}}{6 \pi}\left[\frac{3}{2} \mu+i k\right]
$$

- Reproduces ERE. But here (cf. s waves) cannot take $r_{1}=0$ at LO

A narrow p-wave resonance/bound state

Bertulani, Hammer, van Kolck (2002)

Bedaque, Hammer, van Kolck (2003)

A narrow p-wave resonance/bound state

- First EFT paper to do this assigned $\mathrm{a}_{\mathrm{I}} \sim \mathrm{I} / \mathrm{M}_{\mathrm{l}}{ }^{3} ; r_{\mathrm{I}} \sim \mathrm{M}_{\mathrm{l}}$. Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_{1 \sim} / / R, a_{1 \sim} M_{10} 2 / R$

Bedaque, Hammer, van Kolck (2003)

A narrow p-wave resonance/bound state

- First EFT paper to do this assigned $\mathrm{a}_{\mathrm{I}} \sim \mathrm{I} / \mathrm{M}_{\mathrm{l}}{ }^{3} ; r_{1} \sim M_{\mathrm{l}}$. Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_{I} \sim I / R, a_{I} \sim M_{10} 2 / R$ Bedaque, Hammer, van Kolck (2003)
- So, off resonance, $\operatorname{Re}\left[t^{-1}\right]>\operatorname{Im}\left[t^{-1}\right]$: phase shifts are $O\left(M_{l} R\right)$ and scattering is perturbative away from resonance cf. Pascalutsa, DP (2003)

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{12 \pi}{m_{R} r_{1}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{2}-k_{R}^{2}} \quad k_{R}^{2}=\frac{2}{a_{1} r_{1}}
$$

A narrow p-wave resonance/bound state

- First EFT paper to do this assigned $\mathrm{a}_{\mathrm{I}} \sim \mathrm{I} / \mathrm{M}_{\mathrm{l}}{ }^{3} ; r_{1} \sim M_{\mathrm{l}}$. Bertulani, Hammer, van Kolck (2002)
- Here we adopt $r_{I} \sim I / R, a_{I} \sim M_{10} 2 / R$ Bedaque, Hammer, van Kolck (2003)
- So, off resonance, $\operatorname{Re}\left[t^{-1}\right]>\operatorname{Im}\left[t^{-1}\right]$: phase shifts are $O\left(M_{10} R\right)$ and scattering is perturbative away from resonance cf. Pascalutsa, DP (2003)

$$
\langle\mathbf{k}| t_{1}\left|\mathbf{k}^{\prime}\right\rangle=-\frac{12 \pi}{m_{R} r_{1}} \frac{\mathbf{k} \cdot \mathbf{k}^{\prime}}{k^{2}-k_{R}^{2}} \quad k_{R}^{2}=\frac{2}{a_{1} r_{1}}
$$

- Resonance width is $\sim E_{R} k_{R} / r_{1}$, so it is parametrically narrow. Need to resum width if $k^{2}-k_{R^{2}}$ gets small

P-wave FSI in $\gamma_{\mathrm{EI}}+{ }^{11} \mathrm{Be} \rightarrow 10 \mathrm{Be}+\mathrm{n}$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

- "Be: I/2- (P-wave) state bound by 0.18 MeV

P-wave FSI in $\gamma_{\mathrm{EI}}+{ }^{11} \mathrm{Be} \rightarrow 10 \mathrm{Be}+\mathrm{n}$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

- IIBe: I/2- (P-wave) state bound by 0.18 MeV
- ${ }^{10} \mathrm{Be}+\mathrm{n}$ FSI "natural" in spin-3/2 channel, i.e. suppressed by three orders

P-wave FSI in $\gamma_{\mathrm{EI}}+{ }^{11} \mathrm{Be} \rightarrow 10 \mathrm{Be}+\mathrm{n}$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

- IIBe: I/2- (P-wave) state bound by 0.18 MeV
- ${ }^{10 B e}+n$ FSI "natural" in spin-3/2 channel, i.e. suppressed by three orders
= FSI in spin-I/2 channel: stronger, but "kinematic" nature of P-wave bound state means P-wave scattering is perturbative away from it. EFT analysis in terms of scales:

$$
k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}{ }^{2}\right) \Rightarrow \delta_{1} \sim R_{\text {corere }} / R_{\text {nalo }} \text { if } k \sim 1 / R_{\text {nalo }} \sim \gamma_{1} \text {. }
$$

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

P-wave FSI in $\gamma_{\mathrm{EI}}+{ }^{11} \mathrm{Be} \rightarrow 10 \mathrm{Be}+\mathrm{n}$

Typel \& Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

- IIBe: I/2- (P-wave) state bound by 0.18 MeV
- ${ }^{10} \mathrm{Be}+\mathrm{n}$ FSI "natural" in spin-3/2 channel, i.e. suppressed by three orders
= FSI in spin-I/2 channel: stronger, but "kinematic" nature of P-wave bound state means P-wave scattering is perturbative away from it. EFT analysis in terms of scales:

$$
k^{3} \cot \delta_{1}=-1 / 2 r_{1}\left(k^{2}+\gamma_{1}{ }^{2}\right) \Rightarrow \delta_{1} \sim R_{\text {corere }} / R_{\text {nalo }} \text { if } k \sim 1 / R_{\text {nalo }} \sim \gamma_{1} \text {. }
$$

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

- Need both $\gamma_{ı}$ and $r_{I} \equiv A_{l}$ at NLO in this observable. A_{0} also becomes a free parameter at NLO: fit it to Coulomb dissociation data

Coulomb dissociation of ${ }^{11} \mathrm{Be}$: result

Data: Palit et al., 2003
Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :

$$
r_{0}=2.7 \mathrm{fm}
$$

Coulomb dissociation of ${ }^{I I} \mathrm{Be}$: result

Data: Palit et al., 2003
Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :

$$
r_{0}=2.7 \mathrm{fm}
$$

Need P-wave effective range

- Here value of $r ı$ used to fit $B\left(E I: I / 2^{+} \rightarrow I / 2^{-}\right)$works.

$$
r_{1}=-0.66 \mathrm{fm}^{-1}
$$

Coulomb dissociation of ${ }^{I I} \mathrm{Be}:$ result

Data: Palit et al., 2003
Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :

$$
r_{0}=2.7 \mathrm{fm}
$$

Need P-wave effective range

- Here value of r, used to fit $B\left(E I: I / 2^{+} \rightarrow I / 2^{-}\right)$works.

$$
r_{1}=-0.66 \mathrm{fm}^{-1}
$$

NLO: $\left(\left\langle r_{\mathrm{c}}{ }^{2}\right\rangle+\left\langle\mathrm{rBe}^{2}\right\rangle\right)^{1 / 2}=2.44 \mathrm{fm}$

Coulomb dissociation of ${ }^{I I} \mathrm{Be}:$ result

Data: Palit et al., 2003
Analysis: Hammer, Phillips. NPA, 2011

- Reasonable convergence
- Information on value of ro through fitting of A_{0} :

$$
r_{0}=2.7 \mathrm{fm}
$$

Need P-wave effective range

- Here value of r, used to fit $B\left(E I: I / 2^{+} \rightarrow I / 2^{-}\right)$works.

$$
r_{1}=-0.66 \mathrm{fm}^{-1}
$$

NLO: $\left(\left\langle\mathrm{rc}^{2}\right\rangle+\left\langle\mathrm{rBe}^{2}\right\rangle\right)^{1 / 2}=2.44 \mathrm{fm}$
Use of ab initio input, e.g. for ANC?

Status as in "Solar Fusion II"

- Energies of relevance $\approx 20 \mathrm{keV}$
- There dominated by ${ }^{7 B e}$-p separations ~10s of fm
- Below narrow I+ resonance proceeds via s- and d-wave direct capture
- Energy dependence due to interplay of bound-state properties, Coulomb, strong ISI

- SF II central value used energy-dependence from Descouvemont's ab initio eight-body calculation. Errors from consideration of energydependence in a variety of "reasonable models"

Data situation

- 42 data points for $100 \mathrm{keV}<\mathrm{E}_{\mathrm{c} . \mathrm{m} .}<500 \mathrm{keV}$
- Junghans (BEI and BE3)
- Fillipone
- Baby
- Hammache (I998 and 200I)
- CMEs
- 2.7% and 2.3%
- 11.25%
- 5\%
- 2.2\% (1998)
- Subtract MI resonance: negligible impact at 500 keV and below
- Deal with CMEs by introducing five additional parameters, ξ_{j}

Building the pdf

- Bayes:

$$
\operatorname{pr}\left(\vec{g},\left\{\xi_{i}\right\} \mid D ; T ; I\right)=\operatorname{pr}\left(D \mid \vec{g},\left\{\xi_{i}\right\} ; T ; I\right) \operatorname{pr}\left(\vec{g},\left\{\xi_{i}\right\} \mid I\right),
$$

- First factor: likelihood

$$
\ln \operatorname{pr}\left(D \mid \vec{g},\left\{\xi_{i}\right\} ; T ; I\right)=c-\sum_{j=1}^{N} \frac{\left[\left(1-\xi_{j}\right) S\left(\vec{g} ; E_{j}\right)-D_{j}\right]^{2}}{2 \sigma_{j}^{2}}
$$

- Second factor: priors
- Independent gaussian priors for ξ_{j}, centered at zero and with width=CME
- Gaussian priors for as=1 and as=2, based on Angulo et al. measurement
- All other EFT parameters assigned flat priors, corresponding to natural ranges
- No s-wave resonance below 600 keV

Marginalizing \rightarrow pdfs

$$
\operatorname{pr}\left(g_{1}, g_{2} \mid D ; T ; I\right)=\int \operatorname{pr}\left(\vec{g},\left\{\xi_{i}\right\} \mid D ; T ; I\right) d \xi_{1} \ldots d \xi_{5} d g_{3} \ldots d g_{9}
$$

- ANCs are highly correlated but sum of squares strongly constrained
- One spin-I short-distance parameter: $0.33 \bar{L}_{1} /\left(\mathrm{fm}^{-1}\right)-\epsilon_{1}$

[^0]: Sourre- "The 5 gna and the Ncise" ty Näte Slver \| Authner Rancy Olson irandalonison com / Grandal_olscn)

