The Direct Photon Puzzle

EMMI Physics Day 2018

Klaus Reygers Heidelberg University 20 November 2018

Why Heavy-Ion Collisions?

- Particle physics: reductionism
- Heavy-ion physics:
 Emergent properties of QCD

More precisely: "Material properties" of the QGP?

"More is different"

Philip W. Anderson, Science, 177, 1972, p. 393

thermalization: hadronization:

 $au_{\mathsf{th}} = 1\text{--}2\,\mathsf{fm}/c$

 $au_c \approx 10 \, \mathrm{fm}/c$ (LHC)

QGP → hadron gas at $T \approx 155 \text{ MeV}$

Why Photons?

Ideal tool to study the early hot QGP

An Iconic Figures from another Field

Recipe: Good data + well understood theory

A Candidate for an Iconic Figure from Heavy Ions: Planck-like Photon Spectrum

Promise: T_{QGP} from QGP photons

Produced over the entire duration of the collision

- Tests our understanding of the space-time evolution
- Access to initial T_{QGP}
- Expect more photons per pion at low p_T than in pp
- But: Slope $T_{eff} > T_{QGP}$ due to blue shift

QGP photon rate r_{γ} (lowest order): $E_{\gamma} \frac{\mathrm{d}r_{\gamma}}{\mathrm{d}^3 p} \propto \alpha \alpha_s T^2 e^{-E_{\gamma}/T} \log \frac{E_{\gamma} T}{k_c^2}$

Total emission rate: $r_\gamma \propto T^4$

Direct Photons at RHIC (Au-Au at $\sqrt{s_{NN}} = 200$ GeV)

Direct Photons at the LHC (Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV)

Larger $T_{\rm eff}$ at the LHC

T_{eff} LHC

- ▶ 0-20% Pb-Pb@2.76 TeV
- without pQCD subtraction: $T_{\rm eff} = 304 \pm 11^{\rm stat} \pm 40^{\rm sys} \, {\rm MeV}$
- with pQCD subtraction: $T_{\text{eff}} = 297 \pm 12^{\text{stat}} \pm 41^{\text{sys}} \text{ MeV}$

T_{eff} RHIC

- ▶ 0-20% Au-Au@0.2 TeV
- T_{eff} = 239 ± 25^{stat} ± 7^{sys} MeV (pp parameterization subtracted)

Elliptic Flow

Direct Photon Puzzle

- Around since 2011
- PHENIX:
 "Data a challenge to theory"
- Theorist (Ch. Gale):
 "Theory a challenge to the data"

What's actually so puzzling?

Elliptic flow builds up gradually with time in hydro models:

Direct-Photon Puzzle: Status

- Challenging for hydro models to describe v₂ and yield
- ALICE γ_{dir} and v₂:
 "No puzzle within current errors"

ALICE Direct-Photon v₂

Large $V_{2,dir}$:

 $V_{2,dir} \approx V_{2,decay}$

But no puzzle within the current uncertainties

EMMI Rapid Reaction Task Force on the Direct Photon Flow Puzzle

- Feb. 2014, 25 participants (theory + experiment)
- Open Symposium: https://indico.gsi.de/conferenceDisplay.py?confld=2662
- Detailed discussions on
 - Averaging of v_n over large centrality bins, definition of v_n in models
 - Definition of decay photon cocktail in experiment and models, contribution from short-lived resonances
 - Comparison of the space-time evolution (hydro models, PHSD, parameterized fireball evolution)
 - pQCD contribution in various models
 - Initial flow, near T_c enhancement of photon rates, bremsstrahlung photons in the hadrons gas, Glasma photons, role of fragmentation photons, ...
- Puzzle remains after checking various aspects of the data/theory comparison

HELMHOLTZ

More about EMM

www.asi.de/en

ExtreMe Matter Institute EMMI

EMMI Rapid Reaction Task Force

Helmholtz Alliance

Further Information

GSI

Extremes of Density and Temperature: Cosmic Matter in the Laboratory

The Direct Photon Puzzle | K. Reygers | 20 November 2018 16

Possible paradigm shift concerning role of photons as QGP messengers?

[1]: O. Linnyk et al, 1512.08126[2]: M. Greif et al, 1612.05811

Decay Photon Cocktail: Beyond m_T scaling for η , ω , η' , ...

 m_T scaling often used to model spectra of η , ω , ...:

$$rac{1}{p_T}rac{{\mathrm d}n}{{\mathrm d}p_T}\propto f(m_T), \quad m_T=\sqrt{m^2+p_T^2}$$

Know your baseline!

Early Stage: Glasma Contribution to total Photon Yield might be Sizable

arXiv:1701.05064 (J. Berges, KR, N. Tanji, R. Venugopalan)

Late Stage: Radiative Recombination?

• Naturally: $v_2(\gamma) \approx v_2(hadron)$

Large T_{eff} due to blue shift

$$T_{
m eff} pprox \sqrt{rac{1+eta}{1-eta}} \, T$$

 "Saves" energy conservation in recombination models

Fujii, Itakura, Nonaka, Nucl.Phys. A967 (2017) 704-707 Young, Pratt, 1511.03147

Early or late stage production: Constraints from Photon HBT?

$$C_2 = \frac{f(\vec{p}_1, \vec{p}_2)}{f(\vec{p}_1)f(\vec{p}_2)}$$

The Direct Photon Puzzle | K. Reygers | 20 November 2018 21

Onset for
 dN_{ch}/dη = 10–20

 $\alpha = 1.25 \triangleq N_{coll}$ scaling \Rightarrow photons related to initial parton scattering?

er 2018 22

er 2018 22

 $\alpha = 1.25 \triangleq N_{coll}$ scaling \Rightarrow photons related to initial parton scattering?

er 2018 22

Conclusions

- Direct photon puzzle still with us
- Currently mostly at RHIC
- Something rather fundamental in heavy-ion collisions not fully understood
- Possible paradigm shift: Photon production dominated by late stage around T_c ?
- High statistics LHC data will help solve the puzzle

Extra Slides

(Conjectured) QCD Phase Diagram

What is the question?

- What happens if make nuclear matter
- hotter and hotter?
- denser and denser?

solid \rightarrow liquid \rightarrow gas \rightarrow plasma \rightarrow hadron gas \rightarrow QGP

Let the data Speak: Empirical Scaling Law for n_{γ} vs n_{hadron} ?

QGP at fixed temperature T

In recombination $n_{\gamma} \propto n_{
m h}$ models: $n_\gamma \propto n_{
m h}^lpha$ Parameterization: **Bjorken** expansion $\alpha \approx 2$ (only QGP): Realistic hydro model: $\alpha \approx 1.6 - 1.7$ $(p_{T,v} > 1 \text{ GeV}/c)$

> Jean-François Paquet, Hard Probes 2018

A Candidate for an Iconic Figure from Heavy Ions: Planck-like Photon Spectrum

- Will eventually belong to the set of few essential plots in heavy-ion physics
- Along with
 - ► R_{AA} (parton energy loss)
 - Elliptic flow

• ...

Current proxy (here from the LHC) looks already OK, but statistical significance needs to be improved

Direct Photons: PHENIX vs. STAR

Direct Photons: PHENIX vs. STAR

