

New avenues in Laboratory Astroparticle Physics - Investigating Collisionless Shock Acceleration in Laboratory Experiments

Christian Rödel

Helmholtz-Institute Jena

EMMI Days, 20.11.2018

Astroparticle physics: Cosmic rays

Source: Helmholtz Initiative for Astroparticle Physics

N. Gehrels, L. Piro, and P.J.T. Leonard, Scientific American (2002) R. Blandford & D. Eichler, Physics Reports 154, 1 (1987)

www.hi-jena.de

ENERGY (ELECTRON VOLTS)

C. Rödel, Laboratory Astroparticle Physics

Particle Acceleration by Collisionless Shocks

N. Gehrels, L. Piro, and P.J.T. Leonard, Scientific American (2002) R. Blandford & D. Eichler, Physics Reports 154, 1 (1987)

- Understanding of microphysics is gained via plasma theory
- Microphysics of CSA
 and magnetic field
 generation has not yet
 been fully verified by
 experiments

How can we design experiments to study the microphysics of CSA ?

Outline

- 1. Introduction Collisionless Shock Acceleration and Weibel instability
- 2. High intensity laser plasma interactions
- 3. Experiments using cryogenic hydrogen targets
 - 1. Proton acceleration using 150 TW laser DRACO at HZDR
 - 2. Net-like structure of proton beam profile
 - 3. Interpretation of proton radiography of Weibel filaments
- 4. Summary and outlook

High intensity laser plasma interactions

Laser plasma simulations motivate novel acceleration regimes

Collisionless Shock Acceleration

Hydrogen target of solid density would be perfect

C. Rödel, Laboratory Astroparticle Physics

Collisionless Shock Acceleration in laser plasma simulations

- Weibel-mediated Collisionless
 Shock Acceleration
- Laser:
 - $\lambda_0 = 1 \, \mu m$
 - $I_0 = 10^{20} 10^{22} W/cm^2$
 - $\tau = 1 \, ps$
- Plasma:
 - box: $100 \ \mu m \times 20 \ \mu m$
 - $n_e^0 = 10 n_c 100 n_c$
 - $m_i/m_e = 1836$

F. Fiuza *et al.*, Phys. Rev. Lett. 108, 235004 (2012)

20.11.2018

F. Fiuza *et al.* Phys. Rev. Lett. 108, 235004 (2012) x₁ [c / ω_{pi}]

Outline

- 1. Introduction Collisionless Shock Acceleration and Weibel instability
- 2. High intensity laser plasma interactions
- 3. Experiments using cryogenic hydrogen targets
 - 1. Proton acceleration using 150 TW laser DRACO at HZDR
 - 2. Net-like structure of proton beam profile
 - 3. Interpretation of proton radiography of Weibel filaments
- 4. Summary and outlook

Cryogenic hydrogen jets with cylindrical geometry

J. Kim, S. Göde, S. Glenzer, Review of Scientific Instruments 87, 11E328 (2016)

Cryogenic hydrogen jet of solid density as target for laser proton acceleration

Experimental setup

20.11.2018

Proton beam profiles

5 µm hydrogen target

Proton beam profiles

10µm hydrogen target

Interpretation of experimental results

2D Laser plasma simulation

Plasma density (protons)

C. Rödel, Laboratory Astroparticle Physics

20.11.2018

2D Laser plasma simulation

Current density at 100 fs

B_z field at 100 fs

Details and analytical modelling in: S. Göde, C. Rödel, K. Zeil et al., Phys. Rev. Lett. (2017)

2D Laser plasma simulation

E_x field at 100 fs

TNSA sheath field is present in the plasma density gradient

B_z field at 100 fs

Proton radiography of self-generated B fields

Summary

1. Laser plasma simulations suggest the investigation of CSA and relativistic streaming instabilities using high intensity laser interactions with solid-density hydrogen targets

2. Laser plasma experiments

- Solid-density hydrogen targets for laser proton acceleration
- Observation of modulated proton beams due to Weibel filaments

Challenges: Higher intensities, petawatt pulses required

3. Laser plasma simulations:

 3D PIC simulations show filamentation by Weibel instability in rear-side plasma density gradients

Challenges: Time-resolved measurements of formation of plasma instabilities and collisionless shocks

Outlook: Observation of collisionless shocks and plasma instabilities using x-ray free-electron lasers

Reconstructed density profile

Phase-contrast imaging

Thank you for your attention !

S. Göde, M. Gauthier, W. Schumaker, S. Glenzer *HED Science Dept., SLAC National Accelerator Laboratory*

SLAG

K. Zeil, J. Metzkes, L. Obst, M. Rehwald, ..., U. Schramm Helmholtz-Zentrum Dresden-Rossendorf, Germany

T. Kluge, **M. Rödel**, **A. Pelka**, ... , **T. Cowan** Helmholtz-Zentrum Dresden-Rossendorf, Germany

Supplementary slides

www.hi-jena.de

C. Rödel, Laboratory Astroparticle Physics

20.11.2018

23

HI JENA Helmholtz Institute Jena

www.hi-jena.de

C. Rödel, Laboratory Astroparticle Physics

20.11.2018

Collisionless Shock Acceleration

Magnetic field generation by Weibel instability

Weibel instability **Current filamentation instability**

E. Weibel, Phys. Rev. Lett 2, 83 (1959) B. D. Fried, Phys. Fluids 2, 337 (1959)

C. Huntington, F. Fiuza et al., Nature Physics 11, 173 (2015)

www.hi-jena.de

Particle-in-cell simulations

20.11.2018

4