

The charm of XYZ -- Hadron spectroscopy and exotica in the charmonium region

Frank Nerling Frankfurt University & GSI Darmstadt

> *EMMI Physics Day 2018, GSI Darmstadt, Nov 20th 2018*

Outline

Introduction

Motivation

Recent results

- Overview dedicated experiments
- Recent XYZ results at BESIII
- Prospects for precision spectroscopy at PANDA

Summary & outlook

Hadron Spectroscopy -- Recent Highlights

Meson Spectroscopy

American Physical Society:

unexpected, manifestly exotic!

Viewpoint: New Particle Hints at Four-Quark Matter → *Highlight 2013!*

[http://physics.aps.org/articles/v6/139]

What are Hadrons?

- Hadrons = bound states of strong interaction, QCD (quarks/gluons)
- Well known are

Baryons: qqq Anti-Baryons: q̄q̄q̄ Some examples are:							Mesons: qq						Quarks spin =1/2			
							Focu	is in	this t	alk			Flavor	Approx. Mass GeV/c ²	Electric charge	
Bar	yons qq	q and A	Antibar	yons qī	Mesons q q							U up	0.002	2/3		
Baryons are fermionic hadrons. These are a few of the many types of baryons.						Mesons are bosonic hadrons These are a few of the many types of mesons.							d down	0.005	-1/3	
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		C charm	1.3 0.1	2/3 -1/3	
р	proton	uud	1	0.938	1/2	π+	pion	ud	+1	0.140	0		ton	470	2/2	
p	antiproton	ūūd	-1	0.938	1/2	K-	kaon	sū	-1	0.494	0		U top	173	2/3	
n	neutron	udd	0	0.940	1/2	ρ+	rho	ud	+1	0.776	1		b bottom	4.2	-1/3	
Λ	lambda	uds	0	1.116	1/2	B^0	B-zero	db	0	5.279	0		Name	Mass GeV/c ²	Electric charge	

Exotics: And there should be other configurations ...

3/2

 η_c

1.672

NB: gluons are (colour) charged

0

 Ω^{-}

omega

SSS

-1

eta-c

сē

2.980

0

g

gluon

0

0

Comparison QED vs QCD

How do they compare to QED bound states?

Non-relativistic Potential

- Reproduce the asymptotic behaviour of strong interaction
- Coulomb like at small distances
 - → Asymptotic freedom

$$V(r) \xrightarrow{r \to 0} -\frac{4 \alpha_s(r)}{3 r}$$

- Linear at large distances
 - → Confinement

$$V(r) \xrightarrow{r \to \infty} k \cdot r$$

Hadron spectroscopy of charmonium-like (exotics), pg. 5

20/11/2018

Charmonium spectrum (cc̄)

[•] Below open charm threshold:

Good agreement theory vs. experiment

$$V_0^{c\overline{c}} = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}$$
$$V_{\text{spin-dep.}} = \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]$$

+ relativistic corrections!

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Charmonium spectrum (cc̄)

- Below open charm threshold:
 - Good agreement theory vs. experiment

$$V_0^{c\overline{c}} = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}$$
$$V_{\text{spin-dep.}} = \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]$$

+ relativistic corrections!

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

The puzzle of XYZ states

- [PRD 72 (2005) 054026] & [PDG]
- Below open charm threshold:
 - Good agreement theory vs. experiment
- Above open charm threshold:
 - Many predicted states not discovered
 - Many unexpected states observed

$$V_0^{c\overline{c}} = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}$$
$$V_{\text{spin-dep.}} = \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]$$

+ relativistic corrections!

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Mesons and (spin) exotic states

Quark model

• Mesons: Color neutral $q\overline{q}$ systems

QCD: Meson states beyond $q\bar{q}$

- Nowadays definition: Meson = Hadron with B = 0
- In contrast to simple qq allows for => huge variety of states:

Further 4-quark-configurations:

[e.g. Braaten, PRD 90 (2014) 014044

The puzzle of XYZ states

"Bilder des Tages", [stern.de]

The X(3872) is one of the first unexpected and most prominent examples, observed already in 2003 !

Experimental Review of the X(3872)

- The first unexpected state
 - > and the most intriguing one
- First observed by Belle in 2003
 - > $X(3872) \rightarrow J/\psi \pi \pi$
 - > very narrow state with $J^{PC} = 1^{++}$

Both, Belle & BaBar report signal in
 X(3872)→D⁰D^{*0} (D⁰D⁰π⁰ and D⁰D⁰γ)

Experimental Review of the X(3872)

- Mass: m(X) m(\overline{D}^{*0}) m(D⁰) = = - 0.12 ± 0.19 MeV/c²
- Width: Upper limit by Belle
 - Γ_{X(3872)} < 1.2 MeV (90% c.l., 2011)
 </p>

- The first unexpected states
 - > and the most intriguing one
- First observed by Belle in 2003
 - > $X(3872) \rightarrow J/\psi \pi \pi$
 - > very narrow state with $J^{PC} = 1^{++}$
- Both, Belle & BaBar report signal in
 X(3872)→D⁰D^{*0} (D⁰D⁰π⁰ and D⁰D⁰γ)

Experimental Review of the X(3872)

The first unexpected states

 \succ X(3872) \rightarrow J/ $\psi \pi \pi$

"binding energy" of

-0.12+-0.19 MeV ?

and the most intriguing one

> very narrow state with $J^{PC} = 1^{++}$

Both, Belle & BaBar report signal in

> $X(3872) \rightarrow D^0 \overline{D}^{*0}$ ($D^0 D^0 \pi^0$ and $D^0 D^0 \gamma$)

1.8 GeV

First observed by Belle in 2003

- Mass: m(X) m(\overline{D}^{*0}) m(D⁰) = = - 0.12 ± 0.19 MeV/c²
- Width: Upper limit by Belle
 - Γ_{X(3872)} < 1.2 MeV (90% c.l., 2011)</p>

For clarification: Precision measurement of $\Gamma_{X(3872)}$

Molecule ? (q\[q])_1(q\[q])_1

Intriguing Analogon

2 GeV

in the sub-MeV range needed!

Hadron Physics – Major labs & experiments

Hadron Physics – Major labs & experiments

BESIII at BEPCII

- Symmetric e⁺e⁻ collider:
 - > √s = 2.0 4.6 GeV
- Design luminosity:
 - 1x10³³ cm⁻²s⁻¹ (at ψ(3770), achieved in 04/2016)

- Multi-purpose 4π detector with
 - good tracking
 - calorimetry
 - PID and muon detection
- Operating since March 2008

B€SIII

The puzzle of XYZ states

- Below open charm threshold:
 - Good agreement theory vs. experiment
- Above open charm threshold:
 - Many predicted states not discovered
 - Many unexpected states observed

BESIII: Study conventional as well as charmonium-like (exotic) XYZ states

- Direct access to Y states (1⁻⁻) in direct formation (e⁺e⁻ annihilation)
- Study (charged & neutral) Z states

B€SIII

The puzzle of XYZ states

- Below open charm threshold:
 - Good agreement theory vs. experiment
- Above open charm threshold:
 - Many predicted states not discovered
 - Many unexpected states observed

BESIII: Study conventional as well as charmonium-like (exotic) XYZ states

 Direct access to Y states (1⁻⁻) in direct formation (e⁺e⁻ annihilation)

• Study (charged & neutral) Z states

The charged Z_c(3900)

- Discovery of $Z_c(3900)^{\pm} \rightarrow J/\psi \pi^{\pm}$
 - ightarrow e⁺e⁻ \rightarrow J/ ψ m⁺m⁻
 - → at \sqrt{s} = 4.26 GeV (525 pb⁻¹, >8σ)
- Mass close to DD

 ^{*} threshold
- $m = (3899.0 \pm 3.6 \pm 4.9) \text{ MeV}/c^2$ $\Gamma = (46 \pm 10 \pm 20) \text{ MeV}$
- Manifestly exotic:
 - > decays to J/ψ => contains $c\overline{c}$
 - > electrical charged => contains $u\overline{d}$

=> First 4-quark state observation (?!)

• Confirmed by Belle and CLEO-c

[PRL 110 (2013) 252001]

Frank Nerling

EXAMPLE 1 The neutral partner of the $Z_c(3900)$

- Observation of Z_c(3900)⁰ → J/ψπ⁰
 > in e⁺e⁻ → J/ψπ⁰π⁰ GeV (2.8 fb⁻¹, 10.4σ)
 > confirms earlier evidence in CLEO-c data
- Parameters consistent with those of $Z_c(3900)^{\pm}$
- $m = 3894.8 \pm 2.3 \pm 2.7 \text{ MeV}/c^2$ $\Gamma = 29.6 \pm 8.2 \pm 8.2 \text{ MeV}$
 - => Establishes an isospin triplet Z_c(3900)
- Confirmed by Belle and consistent with CLEO-c data

[PRL 115 (2015) 112003]

B€SⅢ The neutral partner of the Z_c(3900)

Taken over from M.Sheppard, different context, Hadron'17

Frank Nerling

Hadron spectroscopy of charmonium-like (exotics) pg. 21

20/11/2018

Two Z_c triplets established

- Nature of these states?
 - > two isospin triplets of charmonium-like exotic states established
- Different decay modes (hidden vs. open charm) of same state observed?
 - further decay channels?

22

B€SⅢ

The puzzle of XYZ states

- Below open charm threshold:
 - Good agreement theory vs. experiment
- Above open charm threshold:
 - Many predicted states not discovered
 - Many unexpected states observed

BESIII: Study conventional as well as charmonium-like (exotic) XYZ states

 Direct access to Y states (1⁻⁻) in direct formation (e⁺e⁻ annihilation)

• Study (charged & neutral) Z states

The Y states, e^+e^- production of J/ $\psi\pi\pi$, $h_c\pi\pi$ and $\psi(2S)\pi\pi$

Some history:

- Discovery of the Y(4260) using ISR by BaBar in $J/\psi\pi^+\pi^-$
- Discovery of the Y(4360) using ISR by BaBar in $\psi(2S)\pi^{-}\pi^{+}$

The Y states, e⁺e⁻ production of $J/\psi\pi\pi$, h_c $\pi\pi$ and $\psi(2S)\pi\pi$

BESIII result, published

B€SⅢ

- \blacktriangleright two peaks favoured over one by >7 σ
- BESIII much higher precision (5.8σ)
- 3 coherent BW fit: Y(4220) and Y(4390)

BESI What happened to the Y states?

Two structures now observed/resolved in all three cases => $Y(4260) \rightarrow Y(4220)$, $Y(4360) \rightarrow Y(4390)$?

Frank Nerling

Hadron spectroscopy of charmonium-like (exotics) pg. 26

OHANN WOLFG.

PANDA Physics Programme

Anti-Proton ANnihilation in DArmstadt

Hadron spectroscopy

- Light mesons
- Charmonium
- Exotic states:

glue-balls, hybrids, molecules / multi-quarks

- (Anti-) Baryon production
- Nucleon structure
- Charm in nuclei
- Strangeness physics
 - > hypernuclei
 - S = -2 nuclear system

Facility for Antiproton and Ion Research

Frank Nerling

High Energy Storage Ring -- HESR

High Resolution (HR) mode:

- Luminosity up to 2 x 10³¹ cm⁻² s⁻¹
- Δp/p = 2 x 10⁻⁵

High Luminosity (HL) mode:

- Luminosity up to 2 x 10³² cm⁻² s⁻¹
- Δp/p = 1 x 10⁻⁴

29

- Access to all fermion-antifermion quantum numbers (not in e⁺e⁻)
- Access to states of high spin J

p a n)d a

Formation: p all $q\overline{q} J^{PC}$ only J^{PC} = 1⁻⁻ cross-section Resonance exp. yield **Cross Section** resolution Beam profile Measured Rate

Access to states of high spin J

 Precise mass resolution in formation reactions

Frank Nerling

31

p a n)d a

Hadron spectroscopy of charmonium-like (exotics) pg. 31

20/11/2018

 $\mathsf{E}_{\mathsf{cms}}$

Some Advantages of Anti-Protons

- Access to all fermion-antifermion quantum numbers (not in e⁺e⁻)
- Access to states of high spin J

 Precise mass resolution in formation reactions

E760/835@Fermilab ≈ 240 keV PANDA@FAIR ≈ 50 keV

Ablikim et al., Phys. Rev. D71 (2005) 092002:Andreotti et al., Nucl. Phys. B717 (2005) 34:BES (IHEP): 3510.3 ± 0.2 MeV/c²E835 (Fermilab): 3510.641 ± 0.074 MeV/c²

Frank Nerling

32

p a n)d a

Hadron spectroscopy of charmonium-like (exotics) pg. 32

20/11/2018

Perfomance Study for energy resonance scans of narrow resonances, like the X(3872)

Scan Procedure Principle (Example)

[FN et al. for the PANDA Collab., Confinment Conf. Aug 2018]

Scan Procedure Principle (Example)

[FN et al. for the PANDA Collab., Confinment Conf. Aug 2018]

Scan Procedure Principle (Example)

^μand a</sup> Here: Sensitivities Breit-Wigner Γ (40 x 2d)

- Extract standard deviation from toy MC fits
- Show relative error $rms_{fit}/\overline{\Gamma}_{fit}$ in [%]

Sensitivities Breit-Wigner Γ (40 x 2d)

- Extract standard deviation from toy MC fits
- Show relative error $rms_{fit}/\overline{\Gamma}_{fit}$ in [%]

- Extract standard deviation from toy MC fits
- Show relative error $rms_{fit}/\overline{\Gamma}_{fit}$ in [%]

p a n)d a

And: Distinction of Lineshapes (40 x 2d)

- Extract standard deviation from toy MC fits
- How well can virtual and bound state be distinguished? → integrate mismatch region:

Sensitivity

 $P_{\rm mis} = N_{\rm mis-id}/N_{\rm MC}$ (Molecule case)

p a n)d a

And: Distinction of Lineshapes (40 x 2d)

- Extract standard deviation from toy MC fits
- How well can virtual and bound state be distinguished? → integrate mismatch region:

Sensitivity

$$P_{\rm mis} = N_{\rm mis-id}/N_{\rm MC}$$
 (Molecule case)

p a n)d a

- Need to measure complete multiplets
 → to really understand XYZ nature
- e.g. di-quarkonium [cq][cq] models provide predictions
 - Look for stranged partners

X(3872)

 1^{++}

[Cleven et al., arXiv:1505.01771]

(a)

X(3915)

 0^{++}

4.2

4.0

3.8

3.6

Mass [GeV]

Look for light high spin states

 $Z_{c}(4020)$

 $Z_{c}(3900)$

input

 1^{+-}

 I^{PC}

prediction

X(3940)

 2^{++}

 J^{PC}

Frank Nerling

Frank Nerling

AntiProton Annihilation at Darmstadt

AntiProton Annihilation at Darmstadt

Summary and Prospectives

• Hadron physics -- Spectroscopy

- Recent hot discoveries in (baryon and) meson spectroscopy
- New exotic states observed during last decade
- Proof validity of fundamental QCD principles
- Charmonium-like exotics:

→ Charged states manifestly exotic matter

Running & new experiments

- Complementary production mechanisms and measurements needed
- Precise knowledge of decay width and line shape essential
- Complete the exotic multiplets

→ PANDA unique:

High statistics + precision resonance scans + high spin states

• Quite some way still to go ...

Summary and Prospectives

• Hadron physics -- Spectroscopy

- Recent hot discoveries in (baryon and) meson spectroscopy
- New exotic states observed during last decade
- Proof validity of fundamental QCD principles
- Charmonium-like exotics:

→ Charged states manifestly exotic matter

Running & new experiments

- Complementary production mechanisms and measurements needed
- Precise knowledge of decay width and line shape essential
- Complete the exotic multiplets

→ PANDA unique:

High statistics + precision resonance scans + high spin states

• Quite some way still to go ...

... stay tuned for further exciting discoveries!

Summary and Prospectives

- Hadron physics -- Spectroscopy
 - Recent hot discoveries in (baryon and) meson spectroscopy
 - New exotic states observed during last decade
 - Proof validity of fundamental QCD principles
 - Charmonium-like exotics:
 - → Charged states manifestly exotic matter

Running & new experiments

- Complementary production
- Precise knowledge of decay
- ➤ Complete the exotic multiple
 → PANDA unique:

High statistics + precision

PANDA will be the facility to study QCD -- hadron structure and spectroscopy

st

Thank you for your attention!

The PANDA collaboration: ~ 500 Members, 72 Institutes, 20 Countries

Austria, Australia, Belarus, China, France, Germany, India, Italy, Poland, Romania, Russia, Spain, Sweden, Switzerland, Thailand, Netherlands, USA, UK, ... (to be updated/completed)

51

Status of TDRs and Construction

Frank Nerling

52

Hadron spectroscopy of charmonium-like (exotics)

JOHANN WOLFGAN

Collaboration

UniVPM Anconca U Basel **IHEP Beijing U** Bochum **U** Bonn **U** Brescia **IFIN-HH Bucharest AGH UST Cracow IFJ PAN Cracow JU Cracow U** Cracow **FAIR Darmstadt GSI Darmstadt JINR Dubna U** Edinburgh **U** Erlangen **NWU Evanston**

U & INFN Ferrara FIAS Frankfurt U Frankfurt **LNF-INFN** Frascati U & INFN Genova **U** Gießen **U** Glasgow **BITS Pilani KKBGC**, Goa **KVI** Groningen Sadar Patel U, Gujart Gauhati U, Guwahati **FH** Iserlohn FZ Jülich **IMP Lanzhou INFN Legnaro U** Lund HI Mainz

U Mainz **INP Minsk ITEP Moscow MPEI Moscow BARC Mumbai U Münster BINP** Novosibirsk Novosibirsk State U **Novosibirsk STU IPN Orsay** U & INFN Pavia **Charles U, Prague Czech TU, Prague IHEP Protvino Irfu Saclay U of Sidney**

PNPI St. Petersburg KTH Stockholm U Stockholm **Suranaree University SVNIT Surat-**Gujarat South Gukarat U, **Surat-Gujarat** FSU Tallahassee U & INFN Torino **Politecnico di Torino** U & INFN Trieste **U** Uppsala **U** Valencia **SMI Vienna** U Visva-Bharati **SINS Warsaw**

53