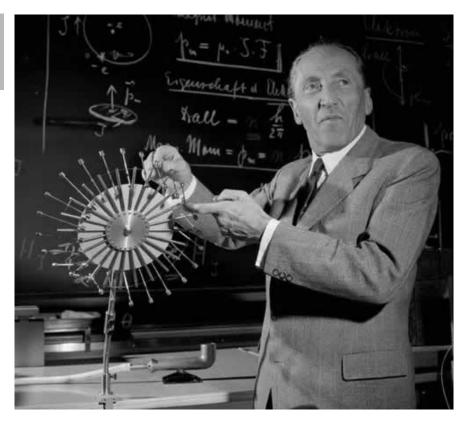


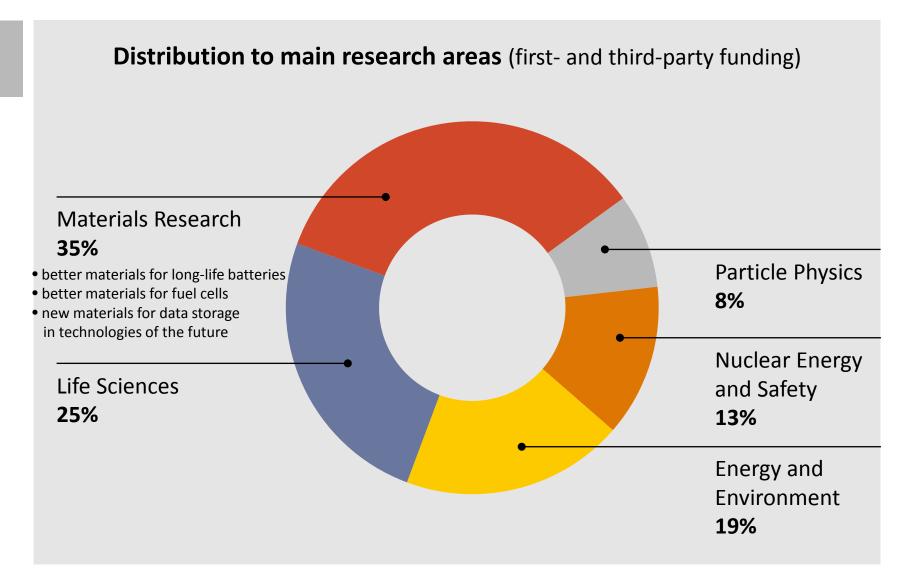
Emilio Andrea Maugeri:: Function :: Paul Scherrer Institut

Targetry of Exotic Radionuclides at PSI

NUSPRASEN SHE-Workshop, GSI, Darmstadt

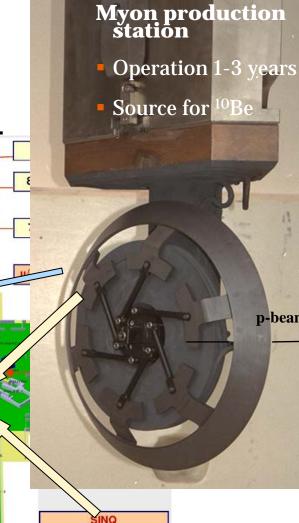


Paul Scherrer Institut (PSI) (1988)



Paul Scherrer (1890–1969)

- Studied physics and mathematics at the Swiss Federal Institute of Technology (ETH) Zurich, in Koenigsberg and in Goettingen, Germany
- 1920: professor of experimental physics at ETH Zurich; 1927: Director of the Institute of Physics. Was famous for the clarity of his lectures
- Researched x-ray scattering on crystals, liquids and gases (Debye-Scherrer method).
- Later research work was in nuclear physics 1946: President of the Swiss Study Commission on Atomic Energy
- Involved in the foundation of CERN


"Useful" components

Copper beam dump

Proton of 590 MeV and a

-44Ti 53Mn 26Λl 60Fa 59Ni 32Si, 60Co

beam current of up to 2.4 mA.

Special irradiations positions with 590 MeV protons

SINQ transfer channel

V for ⁴⁴Ti and ³²Si production

Bi for ²⁰⁵Pb production

SINQ cooling water ⁷Be, ²²Na, ⁸⁸Y

enter otron]

■ ¹⁰⁶Ru, ⁴⁴Ti_{ge 6}

SINQ target

■ ²⁰⁷Bi, ¹⁷²Hf,

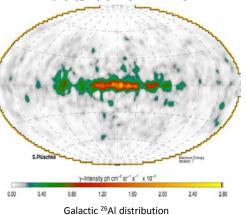
■ ¹⁷³Lu, ¹⁹⁴Hg,

■ ²⁰²Pb, ¹²⁵Sb,

p-beam

26 February 2019, NUSPRASEN SHE-Workshop, GSI

"Useful" components


Copper beam dump

⁴⁴Ti, ²⁶Al and ⁵³Mn for nuclear astrophysics: for describing galactic evolution and for understanding of the history of the universe.

Information on ^{44}Ti (t_{1/2} = 59.1±0.3 y) nucleosynthesis in supernova. The production of the isotope ^{44}Ti is considered to be a distinctive signature of core-collapse SN, from stars more massive than 8–10 solar masses.

Myon production station

- Operation 1-3 years
- Source for ¹⁰Be

[http://hera.ph1.uni-koeln.de/~heintzma/Integral/Artikel/Al26.htm]

Nuclide production facilities, Basic nuclear physics research, Nuclear astrophysic, AMS measurement, Environmental chemistry

SINQ Target Irradiation Program-STIP

⁶⁰Fe is an important chronometer for periods of several Mill. y

³²Si is a new chronometer for nuclear dating

Special irradiations positions with 590 MeV protons

SINQ cooling water ⁷Be, ²²Na, ⁸⁸Y

Bi for ²⁰⁵Pb production

V for ⁴⁴Ti production

SINQ target

- ²⁰⁷Bi, ¹⁷²Hf,
- ¹⁷³Lu, ¹⁹⁴Hg,
- ²⁰²Pb, ¹²⁵Sb,
- 106Ru, 44Ti

26 February 2019, NUSPRASEN SHE-Workshop, GSI

Conclusions

- We can provide different "exotic" isotopes:
 - by their extraction from components of the proton accelerator at PSI, e.g. ²⁶AI, ⁵⁹Ni, ⁵³Mn, ⁶⁰Fe,
 - ⁴⁴Ti, ¹⁰Be, ⁷Be ¹⁴C, ²⁰⁷Bi, ¹⁸²Hf ¹⁴⁶Sm, several Dy isotopes, ²²Na, ⁸⁸Y and many others....
 - or produce them in dedicated p- or n- high energy (up to 560 MeV) irradiation experiments, e.g.
 - ⁴⁴Ti from V and ²⁰⁵Pb from Bi.
- We can produce targets out of them, with different size, shape and activity, using different techniques, e.g. molecular plating and vaporization of different size droplets.

Method

Target characterization

➤ The target material must be as chemically and isotopically pure as reasonably possible. Impurities could, in fact, enhance the background during the cross section measurement.

PHYSICAL REVIEW C 92, 015806 (2015)

Thermal neutron capture cross section of the radioactive isotope ⁶⁰Fe

T. Heftrich,^{1,*} M. Bichler,² R. Dressler,³ K. Eberhardt,⁴ A. Endres,¹ J. Glorius,^{1,5} K. Göbel,¹ G. Hampel,⁴ M. Heftrich,¹ F. Käppeler,⁶ C. Lederer,⁷ M. Mikorski,¹ R. Plag,¹ R. Reifarth,¹ C. Stieghorst,⁴ S. Schmidt,¹ D. Schumann,³ Z. Slavkovská,¹ K. Sonnabend,¹ A. Wallner,⁸ M. Weigand,¹ N. Wiehl,⁴ and S. Zauner⁴

¹Goethe Universität Frankfurt, Frankfurt, Germany

²Technische Universität Wien, Vienna, Austria

³Paul Scherrer Institut, Villigen, Switzerland

⁴Johannes Gutenberg-Universität Mainz, Mainz, Germany

⁵GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

⁶Karlsruhe Institute of Technology, Karlsruhe, Germany

⁷University of Edinburgh, Edinburgh, United Kingdom

⁸Australian National University, Canberra, Australia

(Received 26 January 2015; published 23 July 2015)

Background: Fifty percent of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections.

Purpose: One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as 60 Fe with a half-life of 2.60×10^6 yr. To reproduce this γ activity in the universe, the nucleosynthesis of 60 Fe has to be understood reliably.

Methods: An ⁶⁰Fe sample produced at the Paul Scherrer Institut (Villigen, Switzerland) was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universität Mainz (Mainz, Germany).

Results: The thermal neutron capture cross section has been measured for the first time to $\sigma_{th} = 0.226 \, (^{+0.044}_{-0.049})$ b. An upper limit of $\sigma_{RI} < 0.50$ b could be determined for the resonance integral.

Conclusions: An extrapolation towards the astrophysically interesting energy regime between kT = 10 and 100 keV illustrates that the s-wave part of the direct capture component can be neglected.

DOI: 10.1103/PhysRevC.92.015806 PACS number(s): 25.40.Lw, 26.20.Kn, 27.50.+e, 28.20.Ka

THERMAL NEUTRON CAPTURE CROSS SECTION OF THE ...

PHYSICAL REVIEW C 92, 015806 (2015)

TABLE III. The number of Zr nuclei produced in the activations and the resulting neutron fluences without and with cadmium shielding.^a

	Without Cd	With Cd
$N(^{95}\mathrm{Zr})^{\mathrm{b}}$	$1.517 \pm 0.005 \pm 0.018$	$0.510 \pm 0.006 \pm 0.008$
$N(^{97}\text{Zr})^{\text{b}}$	$1.171 \pm 0.001 \pm 0.018$	$1.067 \pm 0.001 \pm 0.016$
Φ_{th}^{c}	$8.60 \pm 0.03 \pm 0.38$	$1.21 \pm 0.01 \pm 0.16$
$\Phi_{\mathrm{epi}}^{}\mathrm{c}}$	$0.467 \pm 0.002 \pm 0.014$	$0.458 \pm 0.005 \pm 0.014$

aUncertainties are statistical and systematic, respectively.

B. Thermal (n, y) cross section of 60 Fe

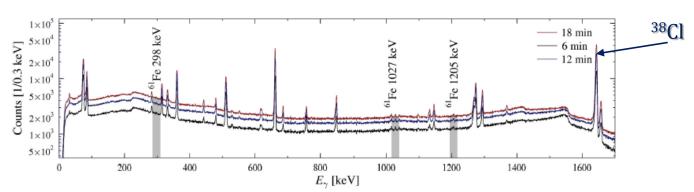
The γ spectrum measured after the activation of the 60 Fe sample without cadmium shielding (Fig. 6) clearly exhibits the γ transitions of 61 Fe at 297.9, 1027, and 1205 keV. However, only the last two were used in the analysis because of the poor signal-to-background ratio of the 298-keV line. The systematic uncertainty is calculated by the error of the efficiency, the I_{γ} , the half-lives, and the neutron fluences (see Tables I, III, and IV). In the corresponding spectrum measured after the activation with cadmium shielding, the 61 Fe lines are completely missing as illustrated in Fig. 7 for the 1027-keV line as an example. In this case, only an upper limit can

TABLE IV. The number of 61 Fe nuclei (in units of 10^{5}) produced in the activations.

γ-ray energy	N (61Fe)2	
(keV)	Without Cd	With Cd
1027	$1.54 \pm 0.19 \pm 0.18$	< 0.179
1205	$1.48 \pm 0.20 \pm 0.16$	< 0.206
Weighted average	$1.51 \pm 0.14 \pm 0.24$	$<0.179^{b}$

^aUncertainties are statistical and systematic, respectively.

be determined for the resonance integral. The numbers of produced ⁶¹Fe nuclei are listed in Table IV.


The number ratio of ⁶¹Fe and ⁶⁰Fe after the activation without cadmium is

$$N(^{61}\text{Fe})/N(^{60}\text{Fe}) = \Phi_{th}\sigma_{th} + \Phi_{epi}\sigma_{RI}.$$
 (12)

The thermal cross section

$$\sigma_{th}(^{60}\text{Fe}) = \frac{N(^{61}\text{Fe})}{N(^{60}\text{Fe})} \frac{1}{\Phi_{th}} - \sigma_{RI} \frac{\Phi_{epi}}{\Phi_{th}}$$
(13)

is determined by the number of sample atoms $N(^{60}\text{Fe})$ (Sec. II B), the neutron fluences Φ_{th} and Φ_{epi} from the Zr monitor measurements (Table III), and the number of ^{61}Fe nuclei produced during the activations $N(^{61}\text{Fe})$ (Table IV).

bIn units of 109.

cIn units of 1014 cm-2.

bAdopted upper limit for further discussion.

Nuclear Instruments and Methods in Physics Research A 613 (2010) 347-350

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Preparation of a ⁶⁰Fe target for nuclear astrophysics experiments

D. Schumann ^{a,*}, J. Neuhausen ^a, I. Dillmann ^b, C. Domingo Pardo ^b, F. Käppeler ^b, J. Marganiec ^b, F. Voss ^b, S. Walter ^b, M. Heil ^c, R. Reifarth ^c, J. Goerres ^d, E. Uberseder ^d, M. Wiescher ^d, M. Pignatari ^{d,e}

ARTICLE INFO

Available online 9 October 2009

Keywords: Nuclear astrophysics Radio-chemical separation Neutron capture cross-section

ABSTRACT

An 60 Fe target for studying the 60 Fe(n, γ) 61 Fe cross-section at stellar energies was prepared using radiochemical separation techniques. In total, 7.8×10^{15} 60 Fe atoms (777 ng) were separated from a copper beam dump for the 590 MeV proton beam of the high intensity accelerator at PSI. The final target was prepared by evaporating the iron-containing aqueous solution onto a graphite backing. With this sample the keV neutron capture cross-section of 60 Fe has been measured at FZ Karlsruhe.

The work is part of the ERAWAST-initiative (Exotic Radionuclides from Accelerator WAste for Science and Technology) which is aimed at extracting rare valuable radionuclides from accelerator waste by chemical means.

© 2009 Elsevier B.V. All rights reserved.

^a Laboratory for Environmental and Radiochemistry, Paul Scherrer Institute Villigen, 5232 Villigen PSI, Switzerland

b Forschungszentrum Karlsruhe, Institut für Kernphysik, Postfach 3640, D-76021 Karlsruhe, Germany

GSI Helmholtzzentrum f
ür Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany

d University of Notre Dame, Department of Physics, Notre Dame, IN 46556, USA

^e Keele University, Keele, Staffordshire ST5 5BG, UK

3. Special requirements for the ⁶⁰Fe separation

The chemical separation methods and the treatment of the sample are determined by several constraints concerning the planned experiments and made the preparation a very challenging issue:

Since 60 Fe with a half-life of $\sim 1.5 \times 10^6$ yr has no measurable γ -lines and only low-energetic β^- -radiation, the exact number of 60 Fe atoms inside the target has to be determined via the ingrowth of the decay product 60 Co, according to 60 Fe (1.5× 10^6 yr) $\stackrel{\beta^-}{\longrightarrow} ^{60}$ mCo (10.5 min) $\stackrel{\beta^-}{\longrightarrow} ^{760}$ Co(5.3 yr) $\stackrel{\beta^-}{\longrightarrow} ^{760}$ Ni (stable). Therefore, the initial contamination of the target with 60 Co had to be as low as possible.

Fig. 2 shows an overview of the nuclear reactions and corresponding nuclear decay data relevant for the measurement of the neutron capture cross-section. The reaction product ^{61}Fe decays with a half-life of 6 min to ^{61}Co by emitting γ -rays of 298, 1027, 1205 keV, respectively. However, the γ -lines of ^{60}Co (1173, 1332 keV) produce a Compton background, which interferes with the γ -signals of the ^{61}Fe activity. Additionally, ^{44}Ti and its decay product ^{44}Sc emit γ -lines at 67, 75, and 1157 keV, which interfere with the radiation of the ^{61}Co ($t_{1/2}$ =1.65 h, 67 keV) as well as with those from ^{61}Fe . Therefore, extremely high separation factors of several orders of magnitude for these contaminants were mandatory for the feasibility of the experiment.

Neutron captures on 58 Fe (natural abundance 0.28%) produce an additional background due to the γ -lines of 59 Fe (1009, 1292 keV), which also interfere with the γ -lines of interest. Therefore, considerable amounts of stable carrier had to be avoided, although the chemical yield of the separation may be dramatically reduced if radionuclides are used without carrier.

4. Chemical separation and results

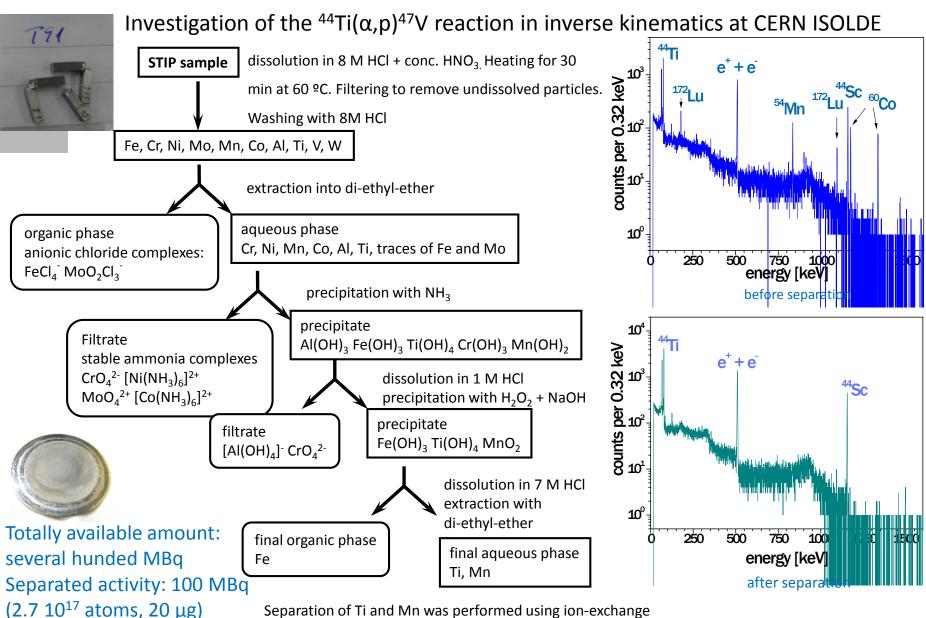
In principle, several chemical methods can be applied for an efficient iron separation, i.e. precipitation of the hydroxide or liquid-liquid extraction as well as ion exchange of the chlorocomplex. Since precipitation procedures require a minimal amount of stable carrier (corresponding to the solubility of the compound) or at least the addition of a non-isotopic carrier, the latter two methods are preferable in cases where carrier-free radionuclides have to be handled. For the present separation problem, liquid-liquid extraction was the method of choice. In principle, the preparation followed the procedure already briefly described in Ref. [9], slightly adapted to the required special conditions.

After dissolution of the copper in 7 M HNO₃, the solution was evaporated to dryness and re-dissolved in 7 M HCl. Five milligrams of stable cobalt carrier in form of Co²⁺ were added in order to achieve a mostly complete Co separation. Under these conditions, Fe3+ forms a water-soluble anionic chloro-complex, which can be extracted into organic media, in our case methylisobutylketone. All other elements of interest, e.g. 44Ti, 44Sc. 60Co and the copper bulk, have very low distribution coefficients and remain predominantly in aqueous solution. The iron can then be re-extracted with diluted HCl. The procedure has to be repeated several times to obtain the required separation factor. The last separation has to be carried out immediately before starting the experiment, because the increase of 60Co due to the decay of 60Fe increases the background rate. After this final purification, the diluted HCl solution (0.1 M) was successively evaporated to dryness onto a graphite backing by slight heating. The dry graphite backing containing the 60Fe was fixed on a thin Kapton foil stretched over an Al target holder and then covered with another Kapton foil. The final 60Fe target is shown in Fig. 3.

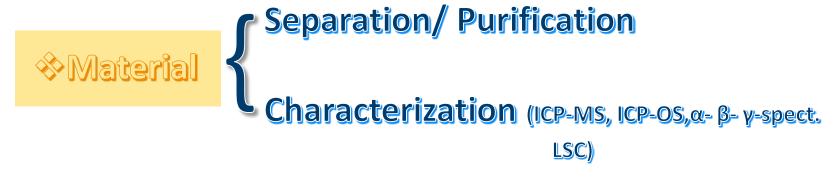
The γ -spectrum taken immediately after the last chemical separation is plotted in Fig. 4. Apart from small contaminations with ^{60}Co and ^{44}Ti of 0.3 Bq each, which corresponds to decontamination factors of 3×10^8 and 5×10^6 , respectively, the spectrum exhibits a high counting rate in the low-energy range due to internal bremsstrahlung from the electron capture decay of ^{55}Fe , which represents an additional complication for the measurement of the neutron capture cross-section of ^{60}Fe . The four background lines – as marked in the expanded spectrum as BG – were assigned to ^{228}Ac , ^{214}Bi , and ^{208}Tl , which are members of the natural decay chains.

The characteristics of the final target are summarized in Table 1. Special attention has to be paid to the number of ⁶⁰Fe atoms, which were determined via the ingrowth of the daughter

Separation/ Purification



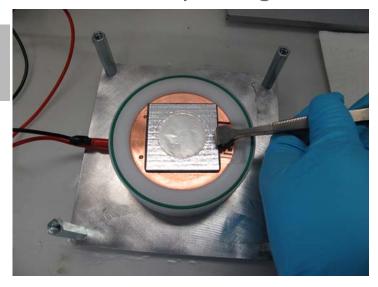
Method

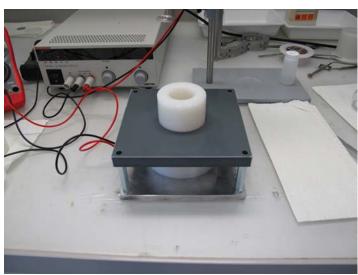

Target characterization

Separation of ⁴⁴Ti

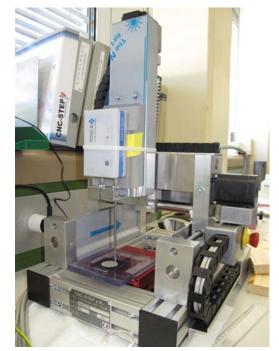
Method

Target characterization




Target characterization

Target preparation methods

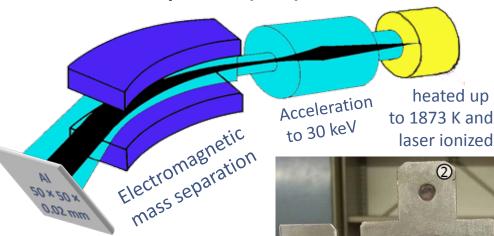

Molecular plating

Deposition of Droplets

Target preparation methods

Physical vapor deposition

Manual hydraulic press



Off-line mass separation at ISOLDE

ISOLDE General Purpose

Separator (GPS)

⁷Be target:

- > ≈ 100 ng of ⁷Be (≈ 1.3 GBq)
- ➤ Chemically pure (⁷Li free)
- > Isotopically pure (9-10Be free)
- > On a backing

3

- > Thin, uniform amd homogeneous layer
 - (1) Al backings: $50 \times 50 \times 0.018$ mm
 - (2) Al Frame: 50 × 50 × 1 mm with a 40 mm diameter central hole
 - (3) Target holder

Target assembly: (1) aluminium backings; (2) aluminium frame, (3) target holder.

40 mm

7.2 × 10¹⁵ ions, ≈ 1GBq, were estimated to be implanted over 10 h

Method

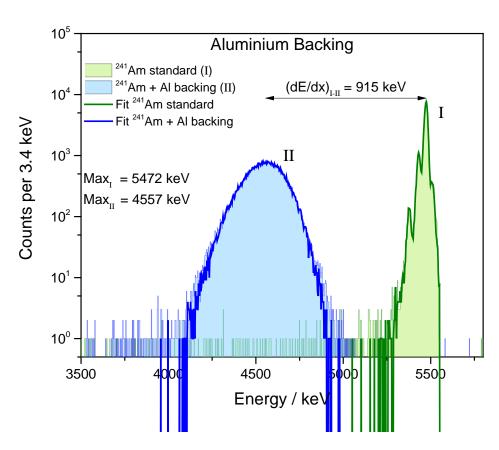
*Target characterization

Target characterization: Activity measurement

The measurement was performed by means of a coaxial HPGe-detector. The target was placed at 389 cm from the detector in order to keep the total impulse rate on the measurement chain on a reasonable range.

Result: (1.03 ± 0.02) GBq. 6.8×10^{15} ions (against the 7.2×10^{15} foreseen)

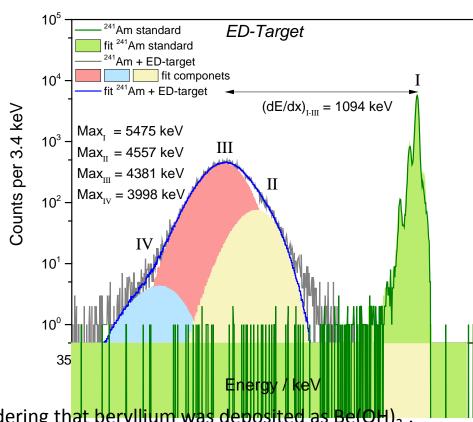
389 cm



Target Characterization

The incident particles should have the same probability of interaction with the target nuclei and the energy loss of all the detected particles should be similar. This implies that the deposited target material must be homogeneous and have uniform thickness.

Target Characterization: measurement of thickness



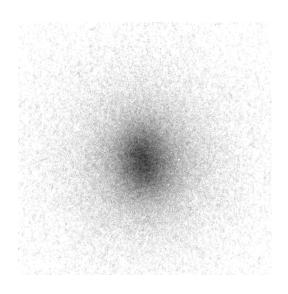
The fit was obtained with an Al-thickness value of (5.25 \pm 0.07) μ m and a fluctuation of (0.50 \pm 0.02) μ m. The value of fluctuation indicates a variation of the thickness of about 10%.

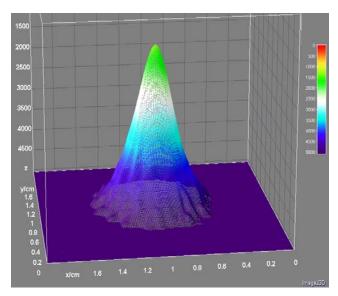
Target Characterization: measurement of thickness

The ED-Target spectrum was simulated considering that beryllium was deposited as Be(OH)2.

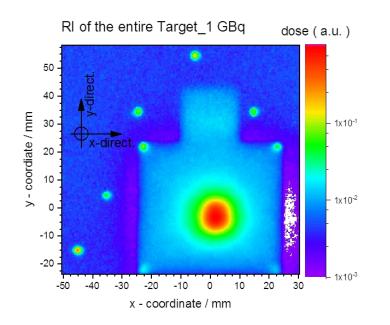
The main peak, III, at 4381 keV, about 84% of the distribution, was attributed to the energy loss resulting from the combined effect of the Al backing and the average deposition layer with a thickness of (1.04 \pm 0.40) µm (energy degradation of 176 keV).

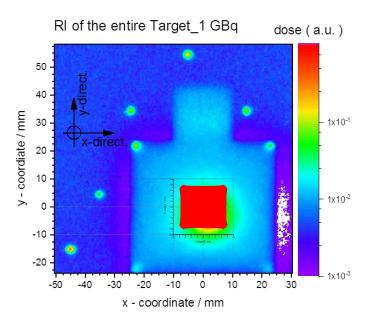
26 February 2019, NUSPRASEN SHE-Workshop, GSI


Target characterization: Distribution map


Radiographic imaging method:

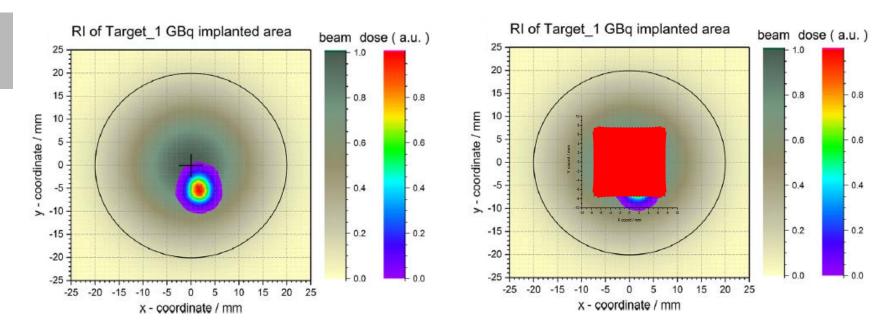
GE Typhoon[™] FLA 7000 Imaging Plate Reader with spatial resolution down to 25 µm was used in combination with reusable Fujifilm imaging plates.





⁷Be distribution: Radiographic imaging

The implanted area has a planar cross section of an ellipse and is shifted with respect to the geometrical centre of the target.


Width parameters and implanted positions

Target Name	x-centre [mm]	x-width [mm]	y-centre [mm]	y-width [mm]	rotation [°]
RI of Target_1GBq	1.699 ± 0.183	2.064 ± 0.011	-5.200 ± 0.112	2.440 ± 0.012	0.13

⁷Be distribution: Radiographic imaging

RI 2D graphs superimposed to the n_TOF neutron beam profile

The centre of the beam profile was overlapped to the geometrical centre of the target

The implanted area of Target was exposed only to about 85% to 75% of the neutron beam intensity

The People of LRC

