Hyperon structure in $e^{+} e^{-}$annihilations
 - past, present and future

EMMI open symposium on hyperon form factors GSI, October 22th 2018
Karin Schönning, Uppsala University

Outline

- The mysterious nucleon
- The hyperon - a charming stranger
- Electromagnetic Form Factors (EMFFs)
- EMFFs in $e^{+} e^{-}$annihilations
- Measurement of hyperon EMFFs
- Past
- Present
- Future

Prologue

Missing in the Standard Model of particle physics: A coherent understanding of the strong interaction.

- Short distances / high energies: pQCD rigorously and successfully tested.
- Charm scale and below: pQCD fails, no analytical solution possible.

The mysterious nucleon

Strong interaction puzzle manifest in the nucleon:

- Proton discovered a century ago.
- Still, we don't understand
- Its abundance
- Its mass
- Its spin
- It radius
- Its inner structure

The mysterious nucleon

Abundance: matter-antimatter / nucleon-antinucleon asymmetry of the Universe.

Equal amounts in Big Bang (?)
\rightarrow Where did the anti-nucleons go?

Baryogenesis*: possible if

- Baryon number violation
- CP violation
- Processes outside thermal equilibrium.
*A. D. Sakharov, JETP 5 (1967) 24-27

Picture from Virginia Tech 5

The mysterious nucleon

Mass:

- Summing quark masses: 1% of total proton mass.
$\rightarrow \sim 99 \%$ of the visible mass in the Universe is dynamically generated by the strong interaction!

But how?

The mysterious nucleon

Spin:

- Valence quark spin only case $\sim 1 / 2$ of the total nucleon spin*.
- Proposed solution to spin crisis:
- Sea quarks?
- Gluons?
- Relative angular momentum?

*C. A. Aidala et al., RMP 85 (2013) 655-691.

The mysterious nucleon

Radius: measured in

- Electron-nucleon scattering
- Electronic hydrogen spectrum
- Muonic hydrogen spectrum.

Results disagree.*

Inner structure:

- Neutron charge distribution intriguing.**
*R. Pohl, Nature 466 (2010)7303, 213-216.

** G. A. Miller, PRL 99 (2007) 112001.

Approaches

When you don't understand a system, you can*

- Scatter on it
- Excite it
- Replace one of the building blocks

*C. Granados et al., EPJA 53 (2017) ${ }^{9} 117$

The hyperon - a charming stranger

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

The hyperon - a charming stranger

- Systems with strangeness
- Scale: $m_{s} \approx 100 \mathrm{MeV} \sim \Lambda_{\mathrm{QCD}} \approx 200 \mathrm{MeV}$: Relevant degrees of freedom?
- Probes QCD in the confinement domain.
- Systems with charm
- Scale: $m_{c} \approx 1300 \mathrm{MeV}$: Quarks and gluons more relevant.
- Probes QCD just below pQCD.

Research field

Fundamental questions

THIS TALK

Electromagnetic Form Factors

- Electromagnetic structure observable.
- Measured in interactions hadron - virtual photon γ^{*}.
- Quantify deviation from point-like case $=$ depend on q^{2} of γ^{*}.

Electromagnetic Form Factors

- Number of EMFFs $=2 \mathrm{~J}+1 \rightarrow$ spin $1 / 2$ baryons have 2.
- Dirac and Pauli FFs F_{1} (spin non-flip) and F_{2} (spin flip).
- Elastic electron-baryon scattering parameterized by:

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}\left\{F_{1}^{2}\left(\mathrm{q}^{2}\right)+\tau\left[F_{2}^{2}\left(\mathrm{q}^{2}\right)+2\left(F_{1}\left(\mathrm{q}^{2}\right)+F_{2}\left(\mathrm{q}^{2}\right)\right)^{2} \tan ^{2} \frac{\theta}{2}\right]\right\}
$$

- In the limit $q^{2} \rightarrow 0$:

Proton $F_{1}(0)=1$
Neutron $F_{1}(0)=0$
Proton and neutron $F_{2}(0)=\mu_{N}$
$=$ anomalous magnetic moment.

Electromagnetic Form Factors

- Sachs FFs G_{E} and G_{M}.
- $G_{E}\left(\mathrm{q}^{2}\right)=F_{1}\left(\mathrm{q}^{2}\right)-\tau F_{2}\left(\mathrm{q}^{2}\right), \quad G_{M}\left(\mathrm{q}^{2}\right)=F_{1}\left(\mathrm{q}^{2}\right)+F_{2}\left(\mathrm{q}^{2}\right)$
- $\tau=q^{2} / 4 M^{2}{ }_{B}$
- In the Breit frame, G_{E} and G_{M} are Fourier transforms of charge- and magnetization density.

Space-like vs. time-like FF's

Time-like form factors

- Time-like FF's are complex:
$-G_{E}\left(q^{2}\right)=\left|G_{E}\left(q^{2}\right)\right| \cdot e^{i \Phi_{E}}$
$-G_{M}\left(q^{2}\right)=\left|G_{M}\left(q^{2}\right)\right| \cdot e^{i \Phi_{M}}$
$-\Delta \Phi\left(q^{2}\right)=\Phi_{M}\left(q^{2}\right)-\Phi_{E}\left(q^{2}\right)=$ phase between G_{E} and G_{M}
- Phase between G_{E} and G_{M} - polarization effects on the final state even when the initial state is unpolarized *.

The EMFF phase

- Phase is production related and depends on q^{2}.
- Constraint 1: Phase result of interfering amplitudes (e.g. s- and d partial waves)
- $\Delta \Phi\left(q^{2}\right)=0$ at threshold
- Constraint 2: Analyticity requires TL FF ~ SL FF as $\left|q^{2}\right| \rightarrow \infty$
$-\Delta \Phi\left(q^{2}\right) \rightarrow 0$ as $\left|q^{2}\right| \rightarrow \infty$

Phase and polarisation

- Imaginary part polarizes the final state baryons*:

$$
P_{n}=-\frac{\sin 2 \theta \operatorname{Im}\left[G_{E}\left(Q^{2}\right) G_{M}^{*}\left(Q^{2}\right)\right] / \sqrt{\tau}}{\left(\left|G_{E}\left(Q^{2}\right)\right|^{2} \sin ^{2} \theta\right) / \tau+\left|G_{M}\left(Q^{2}\right)\right|^{2}\left(1+\cos ^{2} \theta\right)}
$$

Eq. 1

- Real part related to the correlation between the baryon- and antibaryon spin:
$C_{l m}=\frac{\sin 2 \theta R e\left[G_{E}\left(Q^{2}\right) G_{M}^{*}\left(Q^{2}\right)\right] / \sqrt{\tau}}{\left(\left|G_{E}\left(q^{2}\right)\right|^{2} \sin ^{2} \theta\right) / \tau+\left|G_{M}\left(Q^{2}\right)\right|^{2}\left(1+\cos ^{2} \theta\right)}$

Eq. 2

*Nuovo Cim. A 109 (1996) 241.

Phase and polarisation

Advantage of hyperons:

Polarization experimentally accessible by the weak, parity violating decay:

Example: Angular distribution of $\Lambda \rightarrow$ prr decay

$$
\begin{gathered}
I\left(\cos \theta_{\rho}\right)=N\left(1+\alpha P_{\Lambda} \cos \theta_{p}\right) \\
P_{\Lambda}: \text { polarisation } \\
\alpha=0.64 \text { asymmetry parameter }
\end{gathered}
$$

Phase and polarisation

Challenges:

Polarisation depends on energy and scattering angle and has impact on decay angles.

- Formalism needs to take this into account.
- Acceptance depends on many variables.
- Large data samples required.

Phase and polarisation

Challenges:

Polarisation depends on energy and scattering angle and has impact on decay angles.

- Formalism needs to take this into account.
- Acceptance depends on many variables.
- Large data samples required.
\rightarrow Until now, no conclusive phase measurements exist! Main focus so far on cross section / effective form factor.

Why care about the phase?

Measurements: past

BaBar:

- Used the ISR technique on bottomium sample.
- Measured cross section and effective form factor.

- No conclusive separation between G_{E} and G_{M}.
*PRD 76 (2007) 0920006.

Measurements: present

CLEO-c:

- Cross sections in the high energy limit ($q=3770 \mathrm{MeV}$ and $q=4170 \mathrm{MeV}$) of octet baryons and Ω^{-}.
- Claim evidence for effects from di-quark correlations*.

Measurements: present

BESIII@BEPC-II:

- BEPC = Beijing Electron Positron Collider.
- Operates in t-charm mass region.

- BES III = Beijing Spectrometer
- Wide physics scope

Measurements: present

BESIII:

- Four data points between threshold and $\sqrt{s}=3.08 \mathrm{GeV}$.
- Large cross section at threshold.

More details in
PRD 97 (2018) 032013.

Measurements: present

The charmed Λ_{c}^{+}hyperon EMFF's in $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$

PRL 120 (2018) 132001.

- First direct measurement of Λ_{c}^{+} EMFF's.
- Most precise cross section measurement so far.
- Data very close to threshold.

Measurements: present

The charmed Λ_{c}^{+}hyperon EMFF's in $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$
Events / 0.2

- Angular distributions extracted at $\sqrt{\mathrm{s}}=4.5745 \mathrm{GeV}$ and $\sqrt{\mathrm{s}}=4.5995 \mathrm{GeV}$.
- Ratio $\left|G_{E} / G_{M}\right|$ of Λ_{c}^{+}FF's measured for the first time.

$\sqrt{s} \mathrm{MeV}$	$\left\|G_{E} / G_{M}\right\|$
4574.5	$1.10 \pm 0.14 \pm 0.07$
4599.5	$1.23 \pm 0.06 \pm 0.03$

THE FUTURE...

...is already here and it is full of phase measurements!

BESIII energy scan 2014-2015

- World leading data sample between 2.0 and 3.08 GeV .
- Nucleon and strange hyperons EMFF's available.

Measurement of Λ EMFF with BES III

For $R=\left|G_{E} / G_{M}\right|$ and $\Delta \Phi$, formalism for exclusive measurement derived*:
$\mathscr{W}(\xi)=\mathscr{T}_{0}(\xi)+\eta \mathscr{T}_{5}(\xi)$

$$
\begin{aligned}
& -\alpha_{\Lambda}^{2}\left(\mathscr{T}_{1}(\xi)+\sqrt{1-\eta^{2}} \cos (\Delta \Phi) \mathscr{T}_{2}(\xi)+\eta \mathscr{T}_{6}(\xi)\right) \\
& +\alpha_{\Lambda} \sqrt{1-\eta^{2}} \sin (\Delta \Phi)\left(\mathscr{T}_{3}(\xi)-\mathscr{T}_{4}(\xi)\right) .
\end{aligned}
$$

$\mathscr{T}(\xi)=1$
$\mathscr{T}_{1}(\xi)=\sin ^{2} \theta \sin \theta_{1} \sin \theta_{2} \cos \phi_{1} \cos \phi_{2}+\cos ^{2} \theta \cos \theta_{1} \cos \theta_{2}$
$\mathscr{T}_{2}(\xi)=\sin \theta \cos \theta\left(\sin \theta_{1} \cos \theta_{2} \cos \phi_{1}+\cos \theta_{1} \sin \theta_{2} \cos \phi_{2}\right)$
$\mathscr{F}_{3}(\xi)=\sin \theta \cos \theta \sin \theta_{1} \sin \phi_{1}$
$\mathscr{T}_{4}(\xi)=\sin \theta \cos \theta \sin \theta_{2} \sin \phi_{2}$
$\mathscr{F}_{5}(\xi)=\cos ^{2} \theta$
$\mathscr{T}_{6}(\xi)=\cos \theta_{1} \cos \theta_{2}-\sin ^{2} \theta \sin \theta_{1} \sin \theta_{2} \sin \phi_{1} \sin \phi_{2}$
The $\eta=\frac{\tau-R^{2}}{\tau+R^{2}}$ is related to the angular distribution.

The Λ phase in $e^{+} e^{-} \rightarrow J / \Psi \rightarrow \Lambda \bar{\Lambda}$

- $>400000 e^{+} e^{-} \rightarrow J / \Psi \rightarrow \Lambda \bar{\Lambda}$ events.
- "Hadronic" form factors (not EMFFs) accessible.
- Decay asymmetries α_{-}, α_{0} and α_{+}measured.
- Value of $\alpha_{-} 17 \pm 3 \%>$ PDG value.
- Most precise CP test so far for Λ decay: $\frac{\alpha_{-}+\alpha_{+}}{\alpha_{-}-\alpha_{+}}=-0.006 \pm 0.012 \pm 0.007$

$$
\Delta \Phi=42.3^{\circ} \pm 0.6^{\circ} \pm 0.5^{\circ}
$$

The Λ EMFF from $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \Lambda \bar{\Lambda}$

- Same formalism as in J / Ψ case but with α_{-}and α_{+}fixed to ± 0.75
- 555 exclusive events in sample.

$$
\begin{aligned}
& -R=0.96 \pm \mathbf{0 . 1 4} \pm 0.02 \\
& -\Delta \Phi=37^{\circ} \pm \mathbf{1 2}^{o} \pm 6^{o}
\end{aligned}
$$

- Most precise result on R
- First conclusive result on $\Delta \Phi$

BESIII
More details in talk by C. Li

The Λ EMFF from $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \Lambda \bar{\Lambda}$

Model predictions by Haidenbauer and Meissner.*
*PLB 761(2016) 456, see also talk by Meissner
BaBar: PRD 76 (2007) 092006 *BES III: Talk by C. Li, BEACH2018

Future

- BESIII: Possible to measure R and $\Delta \Phi$ for $\Sigma^{0}, \Sigma^{+}, \Xi^{-}$and Λ_{c}^{+}:
- Formalism available / under development.
- A lot of data on tape.
- More is coming!
- Belle II: High q^{2} limit.

What can we learn from this?

- How does $F, R, \Delta \Phi$ change with q^{2} ?
- What is $\Delta \Phi$ for other hyperons $\leftrightarrow \mathrm{SU}(3)$ symmetry?
- Role of $Y \bar{Y}$ final state interaction?
- Charge- and magnetization distribution of hyperons
\rightarrow time-like EMFFs + dispersion theory

Summary

- Hyperons provide a new angle to hadron structure.
- Polarisation measurements give information about the EMFF phase.
- Measurements by BaBar, CLEO-c and BESIII.
- BESIII:
- World-leading data samples for baryon EMFF measurements.
$-\wedge$: Ratio $R=\mid G_{E} / G_{M} /$ measured with unprecedented precision.
$-\Lambda$: Relative phase $\Delta \Phi$ of G_{E} and G_{M} measured for the first time.
- Can measure also $\Sigma^{0}, \Sigma^{+}, \Xi^{-}$and Λ_{c}^{+}.

Thanks for your attention!

