

Hyperon structure in e⁺e⁻ annihilations past, present and future

EMMI open symposium on hyperon form factors GSI, October 22th 2018 Karin Schönning, Uppsala University

Outline

- The mysterious nucleon
- The hyperon a charming stranger
- Electromagnetic Form Factors (EMFFs)
- EMFFs in e^+e^- annihilations
- Measurement of hyperon EMFFs
 - Past
 - Present
 - Future

Prologue

Missing in the Standard Model of particle physics: A coherent understanding of the strong interaction.

- Short distances / high energies: pQCD rigorously and successfully tested.
- Charm scale and below: pQCD fails, no analytical solution possible.

Strong interaction puzzle manifest in the nucleon:

- Proton discovered a century ago.
- Still, we don't understand
 - Its abundance
 - Its mass
 - Its spin
 - It radius
 - Its inner structure

Abundance: matter-antimatter / nucleon-antinucleon asymmetry of the Universe.

Equal amounts in Big Bang (?) \rightarrow Where did the anti-nucleons go?

Baryogenesis*: possible if

- Baryon number violation
- CP violation
- Processes outside thermal equilibrium.

Picture from Virginia Tech $_5$

*A. D. Sakharov, JETP 5 (1967) 24-27

Mass:

• Summing quark masses: 1% of total proton mass.

 \rightarrow ~99% of the visible mass in the Universe is dynamically generated by the strong interaction! But how?

Spin:

- Valence quark spin only case ~1/2 of the total nucleon spin*.
- Proposed solution to *spin crisis:*
 - Sea quarks?
 - Gluons?
 - Relative angular momentum?

*C. A. Aidala et al., RMP 85 (2013) 655-691.

Radius: measured in

- Electron-nucleon scattering
- Electronic hydrogen spectrum
- Muonic hydrogen spectrum.

Results disagree.*

Inner structure:

 Neutron charge distribution intriguing.**

*R. Pohl, *Nature* 466 (2010)7303, 213-216. ** G. A. Miller, PRL 99 (2007) 112001.

Approaches

When you don't understand a system, you can*

- Scatter on it
- Excite it
- Replace one of the building blocks

*C. Granados *et al.*, EPJA 53 (2017)⁹117

The hyperon – a charming stranger

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

The hyperon – a charming stranger

- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$: Relevant degrees of freedom?
 - Probes QCD in the confinement domain.
- Systems with charm
 - − Scale: $m_c \approx 1300$ MeV: Quarks and gluons more relevant.
 - Probes QCD just below pQCD.

Electromagnetic Form Factors

- Electromagnetic structure observable.
- Measured in interactions hadron virtual photon γ^* .
- Quantify deviation from point-like case
 = depend on q² of γ*.

Electromagnetic Form Factors

- Number of EMFFs = $2J+1 \rightarrow \text{spin } \frac{1}{2}$ baryons have 2.
- Dirac and Pauli FFs F_1 (spin non-flip) and F_2 (spin flip).
- Elastic electron-baryon scattering parameterized by:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left\{ F_1^2(q^2) + \tau \left[F_2^2(q^2) + 2(F_1(q^2) + F_2(q^2))^2 \tan^2 \frac{\theta}{2} \right] \right\}$$

• In the limit $q^2 \rightarrow 0$:

Proton $F_1(0) = 1$

Neutron $F_1(0) = 0$

Proton and neutron $F_2(0) = \mu_N$

= anomalous magnetic moment.

Electromagnetic Form Factors

- Sachs FFs G_E and G_M .
 - $G_E(q^2) = F_1(q^2) \tau F_2(q^2), \quad G_M(q^2) = F_1(q^2) + F_2(q^2)$
 - $\tau = q^2/4M^2_B$
 - In the Breit frame, G_E and G_M are Fourier transforms of charge- and magnetization density.

Space-like vs. time-like FF's

Time-like form factors

- Time-like FF's are complex:
 - $G_E(q^2) = |G_E(q^2)| \cdot e^{i\Phi_E}$
 - $G_M(q^2) = |G_M(q^2)| \cdot e^{i\Phi_M}$
 - $\Delta \Phi(q^2) = \Phi_M(q^2) \Phi_E(q^2) =$ phase between G_E and G_M
- Phase between G_E and G_M polarization effects on the final state even when the initial state is unpolarized *.

*Nuovo Cim. A 109 (1996) 241.

The EMFF phase

- Phase is **production related** and depends on q^2 .
- **Constraint 1:** Phase result of interfering amplitudes (*e.g. s* and *d* partial waves)
 - $\Delta \Phi(q^2) = 0$ at threshold
- Constraint 2: Analyticity requires TL FF ~ SL FF as $|q^2| \rightarrow \infty$
 - $\varDelta \Phi(q^2) \rightarrow 0$ as $|q^2| \rightarrow \infty$

UPPSALA UNIVERSITET

Phase and polarisation

Imaginary part polarizes the final state baryons*:

 $P_n = -\frac{\sin 2\theta Im[G_E(Q^2)G_M^*(Q^2)]/\sqrt{\tau}}{(|G_E(Q^2)|^2\sin^2\theta)/\tau + |G_M(Q^2)|^2(1+\cos^2\theta)}$ Eq. 1

Real part related to the correlation between the

baryon- and antibaryon
spin:
$$C_{lm} = \frac{\sin 2\theta Re[G_E(Q^2)G_M^*(Q^2)]/\sqrt{\tau}}{(|G_E(q^2)|^2\sin^2\theta)/\tau + |G_M(Q^2)|^2(1+\cos^2\theta)}$$

Eq. 2

ization

0.5

Phase and polarisation

Advantage of hyperons:

Polarization experimentally accessible by the weak, parity violating decay:

Example: Angular distribution of $\Lambda \rightarrow p\pi^{-}$ decay

 $I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\Lambda} \cos\theta_{\rm p})$

 P_{Λ} : polarisation

 α = 0.64 asymmetry parameter

UPPSALA UNIVERSITET

Phase and polarisation

Challenges:

Polarisation depends on **energy** and **scattering angle** and has impact on **decay angles**.

- Formalism needs to take this into account.
- Acceptance depends on many variables.
- Large data samples required.

Phase and polarisation

Challenges:

Polarisation depends on **energy** and **scattering angle** and has impact on **decay angles**.

- Formalism needs to take this into account.
- Acceptance depends on many variables.
- Large data samples required.

→ Until now, no conclusive phase measurements exist! Main focus so far on cross section / effective form factor.

Why care about the phase?

Phase and polarisation generally more sensitive to the underlying physics than cross section or scattering angle.

Measurements: past

BaBar: e^+ $\gamma(ISR)$ e^- f

- Used the ISR technique on bottomium sample.
- Measured cross section and effective form factor.
- No conclusive separation between G_E and G_M .

*PRD 76 (2007) 092006.

UPPSALA UNIVERSITET

Measurements: present

CLEO-c:

- Cross sections in the high energy limit (q = 3770 MeV and q = 4170 MeV) of octet baryons and Ω^- .
- Claim evidence for effects from di-quark correlations*.

*PRD 96 (2017) 092004.

UPPSALA

Measurements: present

BESIII@BEPC-II:

- BEPC = Beijing Electron Positron Collider.
- Operates in t-charm mass region.

- BES III = Beijing Spectrometer
 - Wide physics scope

UPPSALA UNIVERSITET

Measurements: present

BESIII:

- Four data points between threshold and $\sqrt{s} = 3.08$ GeV.
- Large cross section at threshold.

Measurements: present

The charmed Λ_c^+ hyperon EMFF's in $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

- First direct measurement of Λ_c^+ EMFF's.
- Most precise cross section measurement so far.
- Data very close to threshold.

PRL 120 (2018) 132001.

Measurements: present

The charmed Λ_c^+ hyperon EMFF's in $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

• Angular distributions extracted at $\sqrt{s} = 4.5745$ GeV and $\sqrt{s} = 4.5995$ GeV.

• Ratio $|G_E/G_M|$ of Λ_c^+ FF's measured for the first time.

\sqrt{s} MeV	$ G_E/G_M $
4574.5	$1.10 \pm 0.14 \pm 0.07$
4599.5	$1.23 \pm 0.06 \pm 0.03$

UPPSALA UNIVERSITET

THE FUTURE...

... is already here and it is full of phase measurements!

BESIII energy scan 2014-2015

• World leading data sample between 2.0 and 3.08 GeV.

Measurement of Λ EMFF with BES III

*PLB 772 (2017)⁶16.

For $R = |G_E/G_M|$ and $\Delta \Phi$, formalism for exclusive measurement derived*: $\mathscr{W}(\xi) = \mathscr{T}_0(\xi) + \eta \, \mathscr{T}_5(\xi)$ $-\alpha_{\Lambda}^{2}\left(\mathscr{T}_{1}(\xi)+\sqrt{1-\eta^{2}}\cos(\Delta\Phi)\mathscr{T}_{2}(\xi)+\eta\mathscr{T}_{6}(\xi)\right)$ $+\alpha_{\Lambda}\sqrt{1-\eta^{2}}\sin(\Delta\Phi)\left(\mathscr{T}_{3}(\xi)-\mathscr{T}_{4}(\xi)\right).$ $\mathscr{T}_0(\xi) = 1$ $\mathscr{T}_1(\xi) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$ $\mathscr{T}_{2}(\xi) = \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\phi_{1} + \cos\theta_{1}\sin\theta_{2}\cos\phi_{2})$ $\mathscr{T}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$ θ $\mathscr{T}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$ e^{-} π^{\dagger} $\mathscr{T}_5(\xi) = \cos^2\theta$ $\mathscr{T}_6(\xi) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2$ $(heta_2, arphi_2)$ The $\eta = \frac{\tau - R^2}{\tau + R^2}$ is related to the angular distribution.

UPPSALA UNIVERSITET

The Λ phase in $e^+e^- \rightarrow J/\Psi \rightarrow \Lambda \overline{\Lambda}$

- > 400 000 $e^+e^- \rightarrow J/\Psi \rightarrow \Lambda \overline{\Lambda}$ events.
- "Hadronic" form factors (not EMFFs) accessible.
- Decay asymmetries α_- , α_0 and α_+ measured.
- Value of α_{-} 17 \pm 3% > PDG value.
- Most precise CP test so far for Λ decay: $\frac{\alpha_- + \alpha_+}{\alpha_- \alpha_+} = -0.006 \pm 0.012 \pm 0.007$ $\Delta \Phi = 42.3^\circ \pm 0.6^\circ \pm 0.5^\circ$

The Λ EMFF from $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda \overline{\Lambda}$

← BES III PRELIMINARY

- Same formalism as in J/Ψ case but with α_{-} and α_{+} fixed to ± 0.75
- 555 exclusive events in sample.

 $- R = 0.96 \pm 0.14 \pm 0.02$

 $-\Delta\Phi = 37^o \pm 12^o \pm 6^o$

- Most precise result on R
- First conclusive result on $\Delta \Phi$

Model predictions by Haidenbauer and Meissner.*

*PLB 761(2016) 456, see also talk by Meissner **BaBar: PRD 76 (2007) 092006 ***BES III: Talk by C. Li, BEACH2018

Future

- **BESIII:** Possible to measure *R* and $\Delta \Phi$ for $\Sigma^0, \Sigma^+, \Xi^-$ and Λ_c^+ :
 - Formalism available / under development.
 - A lot of data on tape.
 - More is coming!
- Belle II: High q² limit.

What can we learn from this?

- How does *F*, *R*, $\Delta \Phi$ change with q^2 ?
- What is $\Delta \Phi$ for other hyperons \leftrightarrow SU(3) symmetry?
- Role of $Y\overline{Y}$ final state interaction?
- Charge- and magnetization distribution of hyperons
 - → time-like EMFFs + dispersion theory

Towards a coherent picture of octet baryons?

Summary

- Hyperons provide a new angle to hadron structure.
- Polarisation measurements give information about the EMFF phase.
- Measurements by BaBar, CLEO-c and BESIII.
- BESIII:
 - World-leading data samples for baryon EMFF measurements.
 - Λ : Ratio $R = |G_E/G_M|$ measured with unprecedented precision.
 - Λ : Relative phase $\Delta \Phi$ of G_E and G_M measured for the first time.
 - Can measure also $\Sigma^0, \Sigma^+, \Xi^-$ and Λ_c^+ .

Thanks for your attention!