Observation of spin polarization in $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ at BESIII

Cui Li

EMMI Workshop 2018-10-24

EMFFs

BESIII

 $J/\psi \rightarrow \Lambda \bar{\Lambda}$

Outline

Electromagnetic Form Factors

□ The BESIII experiment

lacksquare Observation of spin polarization in $e^+e^-\to\Lambda\bar\Lambda$ at BESIII

- \succ $\Lambda\bar{\Lambda}$ decay asymmetry parameters with J/ψ
- > Time-like Λ electromagnetic form factors with scan data at 2.396 GeV

Summary

EMFFs BESIII $J/\psi \rightarrow \Lambda\bar{\Lambda}$ Λ EMFFs Summary

Electromagnetic form factors

Assuming one-photon exchange (e⁺e[−] → γ^{*} → BB̄), the Born cross section of spin 1/2 baryon-antibaryon pair production can be parameterized in terms of G_E and G_M:

$$\sigma_{B\bar{B}}(s) = \frac{4\pi\alpha^2\beta}{3s} \left[|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2 \right].$$
(1)

 $\alpha = 1/137.036$ the fine-structure constant, $\beta = \sqrt{1 - 4m_B^2 c^4/s}$ the velocity of the produced baryon, c the speed of light, s the square of the c.m. energy, m_B the mass of the baryon and $\tau = s/(4m_B^2)$.

The effective form factor is defined as

$$G(s)| \equiv \sqrt{\frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}}.$$
 (2)

ENTRY DESITI $J/\psi \rightarrow \Lambda\Lambda$ A ENTRY Summary	EMFFs	BESIII	$J/\psi \rightarrow \Lambda \overline{\Lambda}$	∧ EMFFs	Summary
--	-------	--------	---	---------	---------

Electromagnetic form factors

 \Box The |G(s)| can be straightly calculated:

$$|G(s)| = \sqrt{\frac{\sigma_{B\bar{B}}(s)}{(1+\frac{1}{2\tau})(\frac{4\pi\alpha^2\beta}{3s})}}$$
(3)

□ $G_E(s)$ and $G_M(s)$ can be expressed in terms of the effective form factor G(s) and the ratio $R = |G_E(s)/G_M(s)|$:

$$|G_M(s)|^2 = \frac{2\tau + 1}{2\tau + R^2} |G(s)|^2, \quad |G_E(s)|^2 = R^2 \frac{2\tau + 1}{2\tau + R^2} |G(s)|^2.$$
 (4)

□ The ratio *R* can be extracted from the scattering angle of the baryon:

$$\frac{d\sigma_{Born}(s)}{d\cos\theta} = \frac{2\pi\alpha^2\beta}{4s} [(1+\cos^2\theta) + \frac{1}{\tau}R^2(\sin^2\theta)].$$
 (5)

	D = 0.111			~
EMFFs	BESIII	$J/\psi \rightarrow \Lambda\Lambda$	Λ EMFFs	Summary

Electromagnetic form factors

 \Box This can be expressed in a simpler form, linear in $\cos^2\theta$

$$\frac{d\sigma}{d\cos\theta} \propto 1 + \eta\cos^2\theta,\tag{6}$$

where η is the slope and satisfies $-1 < \eta < 1$.

 \Box R can then be extracted from η

$$R = \sqrt{\tau} \sqrt{\frac{1-\eta}{1+\eta}}.$$
(7)

 \Box Conversely η can be expressed in terms of R as:

$$\eta = \frac{\tau - R^2}{\tau + R^2}.$$
(8)

Space-like versus Time-like Electromagnetic Form Factors

Spin 1/2 baryons have magnetic G_M and electric G_E form factors
 Space-like (q² < 0) G_E and G_M real numbers
 Time-like (q² ≥ 4M_B² > 0)
 G_E(s) = |G_E(s)|e^{iΦ_E}, G_M(s) = |G_M(s)|e^{iΦ_M}
 Relative phase: ΔΦ = Φ_E - Φ_M

Experimental status

EMFFs E	BESIII	$J/\psi \rightarrow \Lambda \bar{\Lambda}$	∧ EMFFs	Summary
---------	--------	--	---------	---------

Experimental status

 CLEO-c: very few hyperon events
 @3.773GeV (15 ~ 105 events)
 Phy. Lett. B739(2014)

- Far from threshold = low cross sections = small data samples = large uncertainties.
- □ No angular distributions \rightarrow no ratio $R = G_E/G_M$ extracted \rightarrow the EMFFs calculated assuming R=1 or 0.

Experimental status

- with data at 2.2324 GeV, 2.4 GeV, 2.8 GeV and 3.065 GeV collected by BESIII in 2011-2012
- **The 2.2324 GeV is the closest to the** $\Lambda\bar{\Lambda}$ threshold so far.
- $\hfill The cross section of 319.5 \pm 57.6 \ pb$ which is larger than theoretical predictions.

See Liang Yan's talk

EMFFs BESII	$J/\psi \rightarrow \Lambda \bar{\Lambda}$	∧ EMFFs	Summary
-------------	--	---------	---------

Beijing Electron Positron Collider (BEPC)

- Founded: 1984
 Ecm = 2-4.6 GeV
- 1989-2005 (BEPC): L_{peak}=1.0x10³¹ /cm²s
- 2008-now (BEPCII): L_{peak}=1.0x10³³/cm²s (Apr. 5, 2016)

EMFFs BESIII $J/\psi ightarrow \Lambda\Lambda$ A EMFFs St	Summary
--	---------

BEijing Spectrometer (BES)

Data collected at **BESIII**

World largest data sample of J/ψ, ψ(2S) and ψ(3770)
 Unique data sample at XYZ (charmonium-like resonances) region
 Can cover 0-4.6 GeV from annihilation or ISR

EMFFs BESIII J/v	$\psi \rightarrow \Lambda \overline{\Lambda}$	Λ EMFFs	Summary
------------------	---	---------	---------

Energy scan 2014-2015 at BESIII

World leading scan data between 2.0 GeV and 3.08 GeV
 Nucleon and hyperon EMFFs available

 $e^+e^-
ightarrow \gamma^*
ightarrow J/\psi
ightarrow \Lambdaar\Lambda$

 $e^+e^-
ightarrow J/\psi
ightarrow \Lambdaar\Lambda$

Process described by two complex numbers: magnetic G_M and electric G_E form factors.

- Two real parameters:
 - > α_{ψ} angular distribution
 - > $\Delta \Phi = arg(G_E/G_M)$ the phase between the two form factors

Dubnickova, Dubnicka, Rekalo Nuovo Cim. A109 (1996) 241 Gakh, Tomasi-Gustafsson NPA771 (2006) 169 Czyz, Grzelinska, Kuhn PRD75 (2007) 074026 Fäldt EPJ A51 (2015) 74; EPJ A52 (2016)141 Fäldt, Kupsc PLB772 (2017) 16 $\Box \ \alpha_{\psi} \text{ well known}$ $\Box \ d\Gamma/d\Omega \propto 1 + \alpha_{\psi} \cos^2 \theta$

ΔΦ never considered before

Baryon polarization in e^+e^- annihilation

Hyperon polarization can be determined using the angular distribution of the daughter particle. Exclusive decay distributions for $e^+e^- \to (\Lambda \to p\pi^-)(\overline{\Lambda} \to \overline{p}\pi^+) \quad e^+e^- \to (\Lambda \to p\pi^-)(\overline{\Lambda} \to \overline{n}\pi^0)$ $\boldsymbol{\xi}:(\cos\theta_{\Lambda},\Omega_{1},\Omega_{2})$ $d\Gamma \propto \mathcal{W}(\boldsymbol{\xi}) d\boldsymbol{\xi} = \mathcal{W}(\boldsymbol{\xi}) d\cos\theta_{\Lambda} d\Omega_1 d\Omega_2$ $\Lambda \rightarrow p\pi^{-}: \Omega_{1} = (\cos \theta_{1}, \phi_{1}) \qquad \alpha_{1} \rightarrow \alpha_{-}$ $\overline{\Lambda} \rightarrow \overline{p}\pi^+ (or \ \overline{n}\pi^0): \Omega_2 = (\cos \theta_2, \phi_2)$ $\overline{\Lambda} \rightarrow \overline{n}\pi^0: \alpha_2 \rightarrow \overline{\alpha}_0 \qquad \overline{\Lambda} \rightarrow \overline{p}\pi^+: \alpha_2 \rightarrow \alpha_+$ Spin correlations $\mathcal{W}(\boldsymbol{\xi}) = 1 + \boldsymbol{\alpha}_{\boldsymbol{\psi}} \cos^2 \theta_{\Lambda}$ + $\alpha_1 \alpha_2 (\sin^2 \theta_{\Lambda} \sin \theta_1 \sin \theta_2 \cos \phi_1 \cos \phi_2 + \cos^2 \theta_{\Lambda} \cos \theta_1 \cos \theta_2)$ + $\alpha_1 \alpha_2 \sqrt{1 - \alpha_{\psi}^2 \cos(\Delta \Phi)} \left\{ \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(\sin \theta_1 \cos \theta_2 \cos \phi_1 + \cos \theta_1 \sin \theta_2 \cos \phi_2 \right) \right\}$ + $\alpha_1 \alpha_2 \alpha_{\psi} (\cos \theta_1 \cos \theta_2 - \sin^2 \theta_\Lambda \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2)$ $\frac{1}{\sqrt{1-\alpha_{\psi}^{2}\sin(\Delta\Phi)\sin\theta_{\Lambda}\cos\theta_{\Lambda}(\alpha_{1}\sin\theta_{1}\sin\phi_{1}+\alpha_{2}\sin\theta_{2}\sin\phi_{2})}}$ Spin polarization Fäldt, Kupsc PLB772 (2017) 16

 $J/\psi
ightarrow (\Lambda
ightarrow p\pi^{-})(\bar{\Lambda}
ightarrow ar{p}\pi^{+}/ar{n}\pi^{0})$

A simultaneous maximum likelihood fit is performed to two data sets.
 Background events subtracted.

Fit results

 \hfill The result of α_ψ is consistent with previous BESIII measurement.

- **\Box** Spin polarization of Λ and $\overline{\Lambda}$ are observed.
- \Box The result of α_{-} is $\sim 5\sigma$ larger than the PDG value.

$e^+e^- ightarrow \gamma^* ightarrow (\Lambda ightarrow ho\pi^-)(ar\Lambda ightarrow ar p\pi^+)$ @ 2.396 GeV

The $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ at the PS185

Fig. 4.31. Spin observables for $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ at 1546 and 1695 MeV/c.

Polarization and spin-correlation are observed. (Phys Rep 368 (2002) 119)
 Theoretical model of meson-exchange describes PS185 data well. (PRC 45, 931(1992); PRC46, 2158(1992))

Theoretical prediction of Time-like Λ form factors

Time-like A EMFFs studied by Haidenbauer and Meissner (PLB 761 (2016) 456-461)

- Restrict to one-photon exchange
- \Box PS185 data $par{p} o \Lambda ar{\Lambda}$ used as input to fit $\Lambda ar{\Lambda}$ potentials (Phys Rep 368 (2002) 119)
- \Box The ratio R and the phase $\Delta \Phi$ are model dependent
- □ Inconclusive BaBar results (PRD 76 (2007) 092006)

Event selection of $e^+e^- \rightarrow \Lambda \bar{\Lambda}$

Track level

- > Polar angle: $|cos\theta| < 0.93$
- Momentum should be less than 0.5 GeV
- > At least 4 tracks
- $\hfill\square$ Tracks with $p < 0.2 \, {\rm GeV}$ are assigned to be pions, $p > 0.2 \, \, {\rm GeV} \, \, p \bar{p}$
- $\hfill\square$ Secondary vertex fit to reconstruct Λ and $\bar\Lambda$
- $\hfill\square$ Four constraint Kinematic fit to Λ and $\bar\Lambda$

Momentum distribution of final states

Distribution of χ^2 **(4C)**

- $\Box \chi^2(4C) < 50$
- Optimized by the value of figure of merit (FOM), $\frac{S}{\sqrt{S+B}}$
- \Box S is signal MC sample, S + B is data
- The FOM is not sensitive to the EMFFs and phase.

Invariant mass of $p\pi^-$ and $\bar{p}\pi^+$

Background study by sideband method

□ $N_{BG} = \frac{1}{2}N_{blue} - \frac{1}{4}N_{green} = 14 \pm 4$ □ Background level is 2.5%.

Decay distribution

- □ Assume CP symmetry in this case $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}}$
- □ The decay distribution described in a simpler form

$$\begin{split} \mathcal{W}(\boldsymbol{\xi}) = &\mathcal{T}_{0}(\boldsymbol{\xi}) + \eta \mathcal{T}_{5}(\boldsymbol{\xi}) \\ &- \alpha_{\Lambda}^{2} \left(\mathcal{T}_{1}(\boldsymbol{\xi}) + \sqrt{1 - \eta^{2}} \cos(\Delta \Phi) \mathcal{T}_{2}(\boldsymbol{\xi}) + \eta \mathcal{T}_{6}(\boldsymbol{\xi}) \right) \\ &+ \alpha_{\Lambda} \sqrt{1 - \eta^{2}} \sin(\Delta \Phi) \left(\mathcal{T}_{3}(\boldsymbol{\xi}) - \mathcal{T}_{4}(\boldsymbol{\xi}) \right). \end{split}$$

 \mathcal{T}_i are known functions of the five-dimensional $\boldsymbol{\xi}(\theta, \Omega_1(\theta_1, \phi_1), \Omega_2(\theta_2, \phi_2))$

$$R = |G_E/G_M|$$

 $\Delta \Phi = \Phi_E - \Phi_M$
 $\eta = rac{ au - R^2}{ au + R^2}$

Fäldt, Kupsc PLB772 (2017) 16

Fit results

A maximum likelihood fit is performed to the data set.

 \Box With PDG value $\alpha_{\Lambda} = 0.642$

>
$$R = |G_E/G_M| = 0.94 \pm 0.16 \pm 0.03$$

 $\succ \Delta \Phi = 42^{\circ} \pm 16^{\circ} \pm 8^{\circ}.$

 \Box With BESIII value $\alpha_{\Lambda} = 0.75 \pm 0.01$

>
$$R = 0.96 \pm 0.14 \pm 0.02$$

 $\succ \Delta \Phi = 37^{\circ} \pm 12^{\circ} \pm 6^{\circ}$

\Box Spin polarization of Λ and $\overline{\Lambda}$ are observed.

Summarv

Comparison of $|G_E/G_M|$ and $\Delta \Phi$

C Results of data support the $\Lambda\bar{\Lambda}$ model I (Red line) PRC 45, 931(1992)

Summary

Results of the cross section and effective EMFFs

The cross section σ = N_{signal}/Le(1+δ)Br(Λ→pπ⁻)Br(Λ→pπ⁺)
 > ISR and vacuum polarization factor 1 + δ is from ConExc
 > ε is the detection efficiency, L is the luminosity
 > σ = 119.0 ± 5.3(stat.) ± 5.1(sys.) pb
 Effective form factors are related to σ, |G(q²)| = √(σ(q²)/(1+1/2τ))(4πα²β/3q²))
 > |G| = 0.123 ± 0.003(stat.) ± 0.003(sys.)
 α ≈ 1/137 is the fine structure constant,

$$eta=\sqrt{1-rac{1}{ au}}$$
 is the velocity, $au=rac{q^2}{4m_{\Lambda}^2}.$

D ·	
Provinic	measurements
1 TEVIOUS	measurements

	$\sigma(pb)$	G	Reference
BESIII $\sqrt{s} = 2.40 \text{GeV}$	$128 {\pm} 19 {\pm} 18$	$0.127{\pm}0.009{\pm}0.009$	Phys. Rev. D 97, 032013 (2018)
BaBar \sqrt{s} =2.35-2.40 GeV	176 ± 34	0.152 ± 0.016	Phys. Rev. D 76, 092006 (2007)

Summary

- \square Hyperon spin polarization is observed in $e^+e^- \to \Lambda\bar{\Lambda}$
- The phase is measured for the first time.
- \Box With J/ψ
 - > The phase determined to be 42.3 $^{\rm o}\pm$ 0.62 $^{\rm o}\pm$ 0.5 $^{\rm o}$
 - > Decay asymmetry parameter of $\Lambda \rightarrow p\pi^-$ obtained to be 0.750 \pm 0.009 \pm 0.004
 - > The CP odd observable $A_{CP} = -0.006 \pm 0.012 \pm 0.007$

With scan data at 2.396 GeV

PDG value $\alpha_{\Lambda} = 0.642$ BESIII value $\alpha_{\Lambda} = 0.75 \pm 0.01$ > $R = |G_E/G_M| = 0.94 \pm 0.16 \pm 0.03$ > $R = |G_E/G_M| = 0.96 \pm 0.14 \pm 0.02$ > $\Delta \Phi = 42^\circ \pm 16^\circ \pm 8^\circ.$ > $\Delta \Phi = 37^\circ \pm 12^\circ \pm 6^\circ$

Thank you for your attention!

Check contribution from two-photon exchange

Significant involvement of two-photon exchange would result in an asymmetric Λ angular distribution(PLB 659 197-200 (2008)):

$$A = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}.$$
(9)

- □ In the formula of decay distribution, an additional term $\kappa \cos \theta \sin^2 \theta$ due to interference of the single and two photon amplitudes.
- **D** The asymmetry A can be determined from κ in the following way:

$$A = \frac{3}{4} \frac{\kappa}{3+\eta}.$$
 (10)

- **The asymmetry is found to be** $A = 0.001 \pm 0.037$
- This result indicates a negligible contribution from two-photon exchange.

The method of Maximum Log Likelihood

- \Box A simpler form of $\frac{d\sigma}{d\cos\theta} \propto 1 + \eta \cos^2\theta$
- \Box *R* can then be extracted by $R = \sqrt{\tau} \sqrt{\frac{1-\eta}{1+\eta}}$
- □ The decay distribution could be expressed as:

$$\mathcal{W}(\boldsymbol{\xi}) = \mathcal{T}_{0}(\boldsymbol{\xi}) + \eta \mathcal{T}_{5}(\boldsymbol{\xi}) -\alpha_{\Lambda}^{2} \left(\mathcal{T}_{1}(\boldsymbol{\xi}) + \sqrt{1 - \eta^{2}} \cos(\Delta \Phi) \mathcal{T}_{2}(\boldsymbol{\xi}) + \eta \mathcal{T}_{6}(\boldsymbol{\xi}) \right)$$
(11)
+ $\alpha_{\Lambda} \sqrt{1 - \eta^{2}} \sin(\Delta \Phi) \left(\mathcal{T}_{3}(\boldsymbol{\xi}) - \mathcal{T}_{4}(\boldsymbol{\xi}) \right) \cdot \begin{pmatrix} \boldsymbol{\xi} & \boldsymbol{\xi} \\ \boldsymbol{\theta}_{1}, \boldsymbol{\varphi}_{1} \end{pmatrix}$
= \mathcal{T}_{i} are known functions as vector $\boldsymbol{\xi}$ π^{-} p
five-dimensional $\boldsymbol{\xi}(\theta, \Omega_{1}(\theta_{1}, \phi_{1}), \Omega_{2}(\theta_{2}, \phi_{2}))$
 $e^{+\Lambda} \Phi$
 ϕ
 π^{+} Λ e^{-}
 \bar{p} $\left(\theta_{2}, \varphi_{2} \right)$

The method of Maximum Log Likelihood

The probability distribution function of the *i*:th event by the vector ξ(θ, Ω₁, Ω₂):

$$\mathcal{P}(\boldsymbol{\xi}_{i};\boldsymbol{\eta},\Delta\Phi) = \mathcal{W}(\boldsymbol{\xi}_{i};\boldsymbol{\eta},\Delta\Phi)\epsilon(\boldsymbol{\xi}_{i})/\mathcal{N}(\boldsymbol{\eta},\Delta\Phi)$$
(12)

where $\epsilon(\boldsymbol{\xi})$ is the efficiency.

□ The joint probability density for observing the *N* events in the data sample is:

$$\mathcal{P}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, ..., \boldsymbol{\xi}_{N}; \boldsymbol{\eta}, \Delta \Phi) = \prod_{i=1}^{N} \mathcal{P}(\boldsymbol{\xi}_{i}; \boldsymbol{\eta}, \Delta \Phi) = \prod_{i=1}^{N} \frac{\mathcal{W}(\boldsymbol{\xi}_{i}; \boldsymbol{\eta}, \Delta \Phi) \epsilon(\boldsymbol{\xi}_{i})}{\mathcal{N}(\boldsymbol{\eta}, \Delta \Phi)}$$
(13)

 $\Box \mathcal{N}(\eta, \Delta \Phi)$ is calculated with a PHSP MC sample

The method of Maximum Log Likelihood

By taking the natural logarithm of the joint probability density, the efficiency function can be separated

$$n \mathcal{P}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, ..., \boldsymbol{\xi}_{N}; \eta, \Delta \Phi) = \sum_{i=1}^{N} \ln \frac{\mathcal{W}(\boldsymbol{\xi}_{i}; \eta, \Delta \Phi)}{\mathcal{N}(\eta, \Delta \Phi)} + \sum_{i=1}^{N} \ln \epsilon(\boldsymbol{\xi}_{i}), \quad (14)$$

□ Technically, minimization $S = -\ln \mathcal{L}$ instead of maximization is performed using MINUIT.

$$S = -\ln \mathcal{L} = -\sum_{i=1}^{N} \ln \frac{\mathcal{W}(\boldsymbol{\xi}_{i}; \boldsymbol{\eta}, \Delta \Phi)}{\mathcal{N}(\boldsymbol{\eta}, \Delta \Phi)}$$
(15)

 \Box By a fit, η and $\Delta \Phi$ are given.

I