Observation of spin polarization in $e^+e^- \rightarrow \Lambda \bar{\Lambda}$ at BESIII

Cui Li

EMMI Workshop 2018-10-24

Outline

- ☐ Electromagnetic Form Factors
- ☐ The BESIII experiment
- $lue{}$ Observation of spin polarization in $e^+e^-
 ightarrow \Lambda ar{\Lambda}$ at BESIII
 - $ightharpoonup \Lambda ar{\Lambda}$ decay asymmetry parameters with J/ψ
 - > Time-like Λ electromagnetic form factors with scan data at 2.396 GeV
- Summary

EMFFs

Summary

Electromagnetic form factors

 \blacksquare Assuming one-photon exchange ($e^+e^- \to \gamma^* \to B\bar{B}$), the Born cross section of spin 1/2 baryon-antibaryon pair production can be parameterized in terms of G_F and G_M :

$$\sigma_{B\bar{B}}(s) = \frac{4\pi\alpha^2\beta}{3s} \left[|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2 \right].$$
 (1)

 $lpha{=}1/137.036$ the fine-structure constant, $eta=\sqrt{1-4m_B^2c^4/s}$ the velocity of the produced baryon, c the speed of light, s the square of the c.m. energy, m_B the mass of the baryon and $\tau = s/(4m_R^2)$.

The effective form factor is defined as

$$|G(s)| \equiv \sqrt{\frac{2\tau |G_M(s)|^2 + |G_E(s)|^2}{2\tau + 1}}.$$
 (2)

Electromagnetic form factors

EMFFs

 \square The |G(s)| can be straightly calculated:

$$|G(s)| = \sqrt{\frac{\sigma_{B\bar{B}}(s)}{(1 + \frac{1}{2\tau})(\frac{4\pi\alpha^2\beta}{3s})}}$$
 (3)

 \square $G_E(s)$ and $G_M(s)$ can be expressed in terms of the effective form factor G(s) and the ratio $R = |G_E(s)/G_M(s)|$:

$$|G_M(s)|^2 = \frac{2\tau + 1}{2\tau + R^2}|G(s)|^2, \quad |G_E(s)|^2 = R^2 \frac{2\tau + 1}{2\tau + R^2}|G(s)|^2.$$
 (4)

 $lue{}$ The ratio R can be extracted from the scattering angle of the baryon:

$$\frac{d\sigma_{Born}(s)}{d\cos\theta} = \frac{2\pi\alpha^2\beta}{4s}[(1+\cos^2\theta) + \frac{1}{\tau}R^2(\sin^2\theta)]. \tag{5}$$

EMFFs

Electromagnetic form factors

This can be expressed in a simpler form, linear in $\cos^2\theta$

$$rac{d\sigma}{d\cos heta}\propto 1+\eta\cos^2\! heta,$$

where η is the slope and satisfies $-1 < \eta < 1$.

 \square R can then be extracted from η

$$R = \sqrt{\tau} \sqrt{\frac{1-\eta}{1+\eta}}.$$

Conversely η can be expressed in terms of R as:

$$\eta = \frac{\tau - R^2}{\tau + R^2}.$$

(8)

(6)

(7)

Space-like *versus* **Time-like Electromagnetic Form Factors**

- \square Spin 1/2 baryons have magnetic G_M and electric G_E form factors
- \square Space-like $(q^2 < 0)$ G_E and G_M real numbers
- $lue{}$ Time-like $(q^2 \ge 4M_B^2 > 0)$

$$ightharpoonup G_E(s) = |G_E(s)| e^{i\Phi_E}, G_M(s) = |G_M(s)| e^{i\Phi_M}$$

ightharpoonup Relative phase: $\Delta \Phi = \Phi_E - \Phi_M$

Experimental status

 $ightharpoonup e^+e^-
ightarrow \gamma \Lambda \bar{\Lambda}$

Based on very little data.

 $\Lambda\Lambda$: ~200 events 0.2 0.1 2.4 2.6 2.8 2.2 $M_{\Lambda\bar{\Lambda}}$ (GeV/c²)

Total error on the G_E/G_M ratio 33-100%. Events/0.2 10 cos θ

Phys. Rev. D76, 092006(2007)

A polarization: $-0.22 < P_n < 0.28$

Relative phase: $-0.76 < \sin\phi < 0.98$

 $\cos \theta$

Summary

Experimental status

CLEO-c: very few hyperon events $(3.773 \, \text{GeV} \, (15 \sim 105 \, \text{events}))$ Phy. Lett. B739(2014)

- ☐ Far from threshold = low cross sections = small data samples = large uncertainties.
- $lue{}$ No angular distributions o no ratio $R=G_E/G_M$ extracted o the EMFFs calculated assuming R=1 or 0.

Experimental status

- with data at 2.2324 GeV, 2.4 GeV, 2.8 GeV and 3.065 GeV collected by BESIII in 2011-2012
- \blacksquare The 2.2324 GeV is the closest to the $\Lambda\Lambda$ threshold so far.
- $\hfill \Box$ The cross section of 319.5 \pm 57.6 pb which is larger than theoretical predictions.

See Liang Yan's talk

Beijing Electron Positron Collider (BEPC)

BEijing Spectrometer (BES)

Data collected at BESIII

- World largest data sample of J/ψ , $\psi(2S)$ and $\psi(3770)$
- ☐ Unique data sample at XYZ (charmonium-like resonances) region
- Can cover 0-4.6 GeV from annihilation or ISR

Energy scan 2014-2015 at BESIII

- World leading scan data between 2.0 GeV and 3.08 GeV
- Nucleon and hyperon EMFFs available

EMFFs

∧ EMFFs

Summary

$$e^+e^- o \gamma^* o J/\psi o \Lambda \bar{\Lambda}$$

- Process described by two complex numbers: magnetic G_M and electric G_F form factors.
- Two real parameters:

Fäldt, Kupsc PLB772 (2017) 16

- $> \alpha_w$ angular distribution
- \rightarrow $\Delta \Phi = arg(G_E/G_M)$ the phase between the two form factors

Dubnickova, Dubnicka, Rekalo Nuovo Cim. A109 (1996) 241 Gakh, Tomasi-Gustafsson NPA771 (2006) 169 Czvz, Grzelinska, Kuhn PRD75 (2007) 074026 Fäldt EP | A51 (2015) 74; EP | A52 (2016)141

- \square α_{ψ} well known
- \Box $d\Gamma/d\Omega \propto$ $1 + \alpha_{\eta}, \cos^2 \theta$

ΔΦ never considered before

Baryon polarization in e^+e^- annihilation

$$e^+e^- o (\Lambda o p\pi^-)ar\Lambda$$

Hyperon polarization can be determined using the angular distribution of the daughter particle.

Exclusive decay distributions for

$$e^+e^- \to (\Lambda \to p\pi^-)(\overline{\Lambda} \to \overline{p}\pi^+)$$
 $e^+e^- \to (\Lambda \to p\pi^-)(\overline{\Lambda} \to \overline{n}\pi^0)$

$$d\Gamma \propto \mathcal{W}(\boldsymbol{\xi})d\boldsymbol{\xi} = \mathcal{W}(\boldsymbol{\xi})d\cos\theta_{\Lambda}d\Omega_{1}d\Omega_{2} \qquad \boldsymbol{\xi} : (\cos\theta_{\Lambda}, \Omega_{1}, \Omega_{2})$$

$$\Lambda \rightarrow p\pi^{-}: \Omega_{1} = (\cos\theta_{1}, \phi_{1}) \qquad \alpha_{1} \rightarrow \alpha_{-}$$

$$\overline{\Lambda} \rightarrow \overline{p}\pi^{+}(or\ \overline{n}\pi^{0}): \Omega_{2} = (\cos\theta_{2}, \phi_{2})$$

$$\overline{\Lambda} \rightarrow \overline{n}\pi^{0}: \alpha_{2} \rightarrow \overline{\alpha}_{0} \qquad \overline{\Lambda} \rightarrow \overline{p}\pi^{+}: \alpha_{2} \rightarrow \alpha_{+}$$

$$\mathcal{W}(\boldsymbol{\xi}) = 1 + \alpha_{\boldsymbol{\psi}} \cos^2 \theta_{\Lambda}$$
 Spin correlations
$$+ \alpha_{1} \alpha_{2} \left(\sin^{2} \theta_{\Lambda} \sin \theta_{1} \sin \theta_{2} \cos \phi_{1} \cos \phi_{2} + \cos^{2} \theta_{\Lambda} \cos \theta_{1} \cos \theta_{2} \right)$$

$$+ \alpha_{1} \alpha_{2} \sqrt{1 - \alpha_{\boldsymbol{\psi}}^{2}} \cos(\Delta \Phi) \left\{ \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(\sin \theta_{1} \cos \theta_{2} \cos \phi_{1} + \cos \theta_{1} \sin \theta_{2} \cos \phi_{2} \right) \right\}$$

$$+ \alpha_{1} \alpha_{2} \alpha_{\boldsymbol{\psi}} \left(\cos \theta_{1} \cos \theta_{2} - \sin^{2} \theta_{\Lambda} \sin \theta_{1} \sin \theta_{2} \sin \phi_{1} \sin \phi_{2} \right)$$

$$+ \sqrt{1 - \alpha_{\boldsymbol{\psi}}^{2}} \sin(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(\alpha_{1} \sin \theta_{1} \sin \phi_{1} + \alpha_{2} \sin \theta_{2} \sin \phi_{2} \right)$$

Spin polarization
Fäldt, Kupsc PLB772 (2017) 16

18 / 33

$$J/\psi \rightarrow (\Lambda \rightarrow p\pi^{-})(\bar{\Lambda} \rightarrow \bar{p}\pi^{+}/\bar{n}\pi^{0})$$

- A simultaneous maximum likelihood fit is performed to two data sets.
- Background events subtracted.

Fit results

Parameters	This work	Previous res	ults	
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027	BESIII	
$\Delta\Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_		
α_{-}			PDG	CD agrimmating
α_+	$-0.758 \pm 0.010 \pm 0.007$		PDG	CP asymmetry:
$ar{lpha}_0$	$-9.693 \pm 0.016 \pm 0.006$	-		$A_{CP} = \frac{\alpha_{-} + \alpha_{-}}{2}$
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021	PDG	$\alpha_{-} - \alpha_{-}$
$\bar{\alpha}_0/\alpha_1$	$0.913 \pm 0.028 \pm 0.012$	_		

- $lue{}$ The result of α_{ψ} is consistent with previous BESIII measurement.
- \square Spin polarization of Λ and $\bar{\Lambda}$ are observed.
- $lue{}$ The result of $lpha_-$ is $\sim 5\sigma$ larger than the PDG value.

Summary

$$e^+e^- o \gamma^* o (\Lambda o p\pi^-)(ar\Lambda o ar p\pi^+)$$
 @ 2.396 GeV

The $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ at the PS185

Fig. 4.30. Polarisation for $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ at various energies.

Fig. 4.31. Spin observables for $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ at 1546 and 1695 MeV/c.

- Polarization and spin-correlation are observed. (Phys Rep 368 (2002) 119)
- ☐ Theoretical model of meson-exchange describes PS185 data well. (PRC 45, 931(1992); PRC46, 2158(1992))

Theoretical prediction of Time-like ∧ form factors

Time-like Λ EMFFs studied by Haidenbauer and Meissner (PLB 761 (2016) 456-461)

- Restrict to one-photon exchange
- lacksquare PS185 data $par{p} o \Lambdaar{\Lambda}$ used as input to fit $\Lambdaar{\Lambda}$ potentials (Phys Rep 368 (2002) 119)
- $lue{}$ The ratio R and the phase $\Delta\Phi$ are model dependent
- Inconclusive BaBar results (PRD 76 (2007) 092006)

Event selection of $e^+e^- \rightarrow \Lambda \bar{\Lambda}$

- Track level
 - \rightarrow Polar angle: $|\cos\theta| < 0.93$
 - Momentum should be less than 0.5 GeV
 - At least 4 tracks
- \square Tracks with p < 0.2 GeV are assigned to be pions, p > 0.2 GeV $p\bar{p}$
- \square Secondary vertex fit to reconstruct Λ and Λ
- Four constraint Kinematic fit to Λ and $\bar{\Lambda}$

Momentum distribution of final states

Distribution of $\chi^2(4C)$

- $lue{}$ Optimized by the value of figure of merit (FOM), $\frac{S}{\sqrt{S+B}}$
- ☐ The FOM is not sensitive to the EMFFs and phase.

Invariant mass of $p\pi^-$ and $\bar{p}\pi^+$

 $|M(p\pi^-/\bar{p}\pi^+)-m_{\Lambda}|<$ 0.006 GeV, m_{Λ} is the mass of Λ from PDG.

Background study by sideband method

- \square $N_{BG} = \frac{1}{2}N_{blue} \frac{1}{4}N_{green} = 14 \pm 4$
- ☐ Background level is 2.5%.

BESIII

 $J/\psi \rightarrow \Lambda \bar{\Lambda}$

∧ EMFFs

Decay distribution

- \square Assume CP symmetry in this case $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}}$
- The decay distribution described in a simpler form

$$\begin{split} \mathcal{W}(\boldsymbol{\xi}) = & \mathcal{T}_0(\boldsymbol{\xi}) + \eta \mathcal{T}_5(\boldsymbol{\xi}) \\ & - \alpha_{\Lambda}^2 \left(\mathcal{T}_1(\boldsymbol{\xi}) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) \mathcal{T}_2(\boldsymbol{\xi}) + \eta \mathcal{T}_6(\boldsymbol{\xi}) \right) \\ & + \alpha_{\Lambda} \sqrt{1 - \eta^2} \sin(\Delta \Phi) \left(\mathcal{T}_3(\boldsymbol{\xi}) - \mathcal{T}_4(\boldsymbol{\xi}) \right). \end{split}$$

 \mathcal{T}_i are known functions of the five-dimensional $\boldsymbol{\xi}(\theta, \Omega_1(\theta_1, \phi_1), \Omega_2(\theta_2, \phi_2))$

$$R = |G_E/G_M| \ \eta = rac{ au - R^2}{ au + R^2}$$

Fäldt, Kupsc PLB772 (2017) 16

Fit results

- ☐ A maximum likelihood fit is performed to the data set.
- With PDG value $\alpha_{\Lambda} = 0.642$

$$ightharpoonup R = |G_E/G_M| = 0.94 \pm 0.16 \pm 0.03$$

$$\rightarrow$$
 $\Delta \Phi = 42^{\circ} \pm 16^{\circ} \pm 8^{\circ}$.

 \square With BESIII value $\alpha_{\Lambda} = 0.75 \pm 0.01$

$$ightharpoonup R = 0.96 \pm 0.14 \pm 0.02$$

$$\Delta \Phi = 37^{\circ} \pm 12^{\circ} \pm 6^{\circ}$$

 $lue{}$ Spin polarization of Λ and $\bar{\Lambda}$ are observed.

Comparison of $|G_E/G_M|$ and $\Delta \Phi$

 \blacksquare Results of data support the $\Lambda\bar{\Lambda}$ model I (Red line) PRC 45, 931(1992)

EMFFs

Results of the cross section and effective EMFFs

- $\Box \text{ The cross section } \sigma = \frac{N_{signal}}{L\epsilon(1+\delta)Br(\Lambda\to p\pi^-)Br(\bar{\Lambda}\to \bar{p}\pi^+)}$
 - \triangleright ISR and vacuum polarization factor $1+\delta$ is from ConExc
 - \triangleright ϵ is the detection efficiency, L is the luminosity
- $ightharpoonup \sigma = 119.0 \pm 5.3 (stat.) \pm 5.1 (sys.) \ {
 m pb}$
- ullet Effective form factors are related to σ , $|G(q^2)| = \sqrt{rac{\sigma(q^2)}{(1+rac{1}{2 au})(rac{4\pilpha^2eta}{3q^2})}}$

$$>$$
 $|G| = 0.123 \pm 0.003(stat.) \pm 0.003(sys.)$

 $\alpha \approx \frac{1}{137}$ is the fine structure constant,

$$eta = \sqrt{1 - rac{1}{ au}}$$
 is the velocity, $au = rac{q^2}{4m_{
m A}^2}$.

Previous measurements

	$\sigma(pb)$	<i>G</i>	Reference
BESIII $\sqrt{s} = 2.40 \text{GeV}$	128±19±18	$0.127\pm0.009\pm0.009$	Phys. Rev. D 97, 032013 (2018)
BaBar $\sqrt{s} = 2.35-2.40 \text{ GeV}$	176±34	0.152±0.016	Phys. Rev. D 76 , 092006 (2007)

Summary

- $lue{}$ Hyperon spin polarization is observed in $e^+e^-
 ightarrow \Lambda \bar{\Lambda}$
- The phase is measured for the first time.
- \Box With J/ψ
 - ightharpoonup The phase determined to be $42.3^{\circ} \pm 0.62^{\circ} \pm 0.5^{\circ}$
 - \triangleright Decay asymmetry parameter of $\Lambda \to p\pi^-$ obtained to be $0.750 \pm 0.009 \pm 0.004$
 - ightharpoonup The *CP* odd observable $A_{CP}=-0.006\pm0.012\pm0.007$
- With scan data at 2.396 GeV

PDG value $\alpha_{\Lambda} = 0.642$

BESIII value $\alpha_{\Lambda} = 0.75 \pm 0.01$

 $ightharpoonup R = |G_E/G_M| = 0.94 \pm 0.16 \pm 0.03$ $ightharpoonup R = |G_E/G_M| = 0.96 \pm 0.14 \pm 0.02$

 $\Delta \Phi = 37^{\circ} \pm 12^{\circ} \pm 6^{\circ}$ $\Delta \Phi = 42^{\circ} + 16^{\circ} + 8^{\circ}$.

Thank you for your attention!

Check contribution from two-photon exchange

□ Significant involvement of two-photon exchange would result in an asymmetric Λ angular distribution(PLB 659 197-200 (2008)):

$$A = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}.$$
 (9)

- □ In the formula of decay distribution, an additional term $\kappa \cos \theta \sin^2 \theta$ due to interference of the single and two photon amplitudes.
- \square The asymmetry A can be determined from κ in the following way:

$$A = \frac{3}{4} \frac{\kappa}{3 + \eta}.\tag{10}$$

- \Box The asymmetry is found to be $A=0.001\pm0.037$
- ☐ This result indicates a negligible contribution from two-photon exchange.

The method of Maximum Log Likelihood

- \Box A simpler form of $\frac{d\sigma}{d\cos\theta} \propto 1 + \eta \cos^2\theta$
- R can then be extracted by $R = \sqrt{\tau} \sqrt{\frac{1-\eta}{1+\eta}}$
- The decay distribution could be expressed as:

$$\mathcal{W}(\boldsymbol{\xi}) = \mathcal{T}_{0}(\boldsymbol{\xi}) + \eta \mathcal{T}_{5}(\boldsymbol{\xi})$$

$$-\alpha_{\Lambda}^{2} \left(\mathcal{T}_{1}(\boldsymbol{\xi}) + \sqrt{1 - \eta^{2}} \cos(\Delta \Phi) \mathcal{T}_{2}(\boldsymbol{\xi}) + \eta \mathcal{T}_{6}(\boldsymbol{\xi}) \right)$$

$$+\alpha_{\Lambda} \sqrt{1 - \eta^{2}} \sin(\Delta \Phi) \left(\mathcal{T}_{3}(\boldsymbol{\xi}) - \mathcal{T}_{4}(\boldsymbol{\xi}) \right).$$

$$\mathcal{T}_{i} \text{ are known functions as vector } \boldsymbol{\xi}$$

$$(11)$$

- five-dimensional $\boldsymbol{\xi}(\theta, \Omega_1(\theta_1, \phi_1), \Omega_2(\theta_2, \phi_2))$

The method of Maximum Log Likelihood

□ The probability distribution function of the *i*:th event by the vector $\xi(\theta, \Omega_1, \Omega_2)$:

$$\mathcal{P}(\boldsymbol{\xi}_i; \eta, \Delta \Phi) = \mathcal{W}(\boldsymbol{\xi}_i; \eta, \Delta \Phi) \epsilon(\boldsymbol{\xi}_i) / \mathcal{N}(\eta, \Delta \Phi)$$
 (12)

where $\epsilon(\xi)$ is the efficiency.

☐ The joint probability density for observing the *N* events in the data sample is:

$$\mathcal{P}(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, ..., \boldsymbol{\xi}_{N}; \eta, \Delta\Phi) = \prod_{i=1}^{N} \mathcal{P}(\boldsymbol{\xi}_{i}; \eta, \Delta\Phi) = \prod_{i=1}^{N} \frac{\mathcal{W}(\boldsymbol{\xi}_{i}; \eta, \Delta\Phi) \epsilon(\boldsymbol{\xi}_{i})}{\mathcal{N}(\eta, \Delta\Phi)}$$
(13)

The method of Maximum Log Likelihood

☐ By taking the natural logarithm of the joint probability density, the efficiency function can be separated

$$\ln \mathcal{P}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, ..., \boldsymbol{\xi}_N; \eta, \Delta \Phi) = \sum_{i=1}^{N} \ln \frac{\mathcal{W}(\boldsymbol{\xi}_i; \eta, \Delta \Phi)}{\mathcal{N}(\eta, \Delta \Phi)} + \sum_{i=1}^{N} \ln \epsilon(\boldsymbol{\xi}_i), \quad (14)$$

□ Technically, minimization $S = -\ln \mathcal{L}$ instead of maximization is performed using MINUIT.

$$S = -\ln \mathcal{L} = -\sum_{i=1}^{N} \ln \frac{\mathcal{W}(\boldsymbol{\xi}_i; \eta, \Delta \Phi)}{\mathcal{N}(\eta, \Delta \Phi)}$$
 (15)

 \blacksquare By a fit, η and $\triangle \Phi$ are given.