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Exciting near-future prospects of high-quality data.  
Expand our knowledge of the spectrum and structure properties of 
baryons. 
 
   
Missing resonances? 
Diquark clusters? 
 
 
 

Baryon  electromagnetic transition form factors in the 
Covariant Spectator Theory 
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Electron scattering 

CLAS/JLab electron scattering data constrain interpretation of HADES 
dilepton production data. Results have to match at the photon point. 
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Spacelike form factors: 

 

•  Structure information: shape, 
qqq excitation vs. hybrid, ... 

 

•  Evolution of quark-photon coupling 
     with momentum transfer 
 

Transition form factors 

Crossing the boundaries to explore baryon resonances 

Baryon resonances  
transition form factors 

Timelike form factors: 

	

•  Particle production channels:  
vector mesons at small q2

 

 

•  Test of vector meson dominance 

 

•  In-medium dilepton production 

CLAS: Aznauryan et al., 
Phys. Rev. C 80 (2009) 

MAID: Drechsel, Kamalov, 
Tiator, EPJ A 34 (2009) 

Asymptotic scaling? Magnitude of Q2 
where space-like and time-like data  
begin to converge, as enforced by 
analyticity? 

GSI, 2018 

This talk: 
Connect Timelike and SpacelikeTransition Form Factors (TFF) 
Baryon-photon coupling evolution with momentum transfer 



Theoretical toolkits 

Crossing the boundaries to explore baryon resonances 

•  Analyticity 

à Dispersion theory 

•  Dynamics 
à Dyson-Schwinger eqs. 
à Effective Lagrangian models 
à Quark models 
à Vector-meson dominance 

à  In-medium description of  
     resonances! 

Timelike baryon transition form factors not yet within reach in lattice QCD: 
explore alternative methods, estimate theory uncertainty! 
	

Quark-photon coupling  
dynamically generates VM poles!	

•  Medium effects 

Caen, July 2018 
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WHAT WE DO AND OBJECTIVES

We study the properties of quarks and qq̄ mesons using covariant quantum-field
theoretical methods of QCD

Main objectives

find a qq̄ interaction for all mesons (unified description)

learn about the Lorentz structure of the confining interaction

understand mass-generation mechanism of dynamical chiral-symmetry breaking

We calculate

dynamical quark mass function

meson spectrum and vertex functions

quark-photon vertex

meson form factors

meson decay properties

q

�

q

q̄

M
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Covariant	Spectator	Theory		

•  Formulation in Minkowski space. 
 
•  Two-body CST equation effectively sums ladder and crossed-ladder exchange 

diagrams, due to cancelations.  

 

•  Provides wave functions from covariant vertex  with simple transformation 
properties under Lorentz boosts, appropriate angular momentum structures and 
smooth non-relativistic limit.  

•  Manifestly covariant, but only three-dimensional loop integrations. 
  
 
•  Allows to implement confinement and dynamical chiral symmetry breaking.  

single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1
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are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ðuds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
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TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1
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n 1
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Outline	

1 Evidence of separation of partonic and hadronic (pion cloud) effects? 
 
2 Space-like e.m. transition FFs & extension to Timelike e.m. transition FFs  
                           (1232) and N*(1520) cases. 
 
3 Predictions for dilepton mass spectrum and decay widths. 
 
4  results for Timelike e.m. FFs of the baryon octet. 
 
This talk: CST phenomenological ansatz for baryon wave functions. 
 
Very	recent:	Significant	progress	in	
the	descripAon	of	dynamical	quark	mass	generaAon.	
Recent:		Good	and	economical	descripAon	of	
the	masses	of	heavy	and	heavy-light	mesons,	including	highly	excited	states.	
 
 

�
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Bare quark and pion cloud components 
	

Timelike: |G∗M | - new model

New model: consider the explicit connection with the

microscoptic pion cloud structure – quarks with structure

(a) Coupling with pion on the air:
related with pion electromagnetic form factor Fπ(q2)

(b) Coupling with intermediate baryon states (octet/decuplet):
parametrized effectively by [G̃D(q2)]2 ∝ 1/Q8

G̃D(q2) =
Λ4
D

(Λ2
D − q2) + Λ2

DΓ2
D(q2)

,

Λ2
D cutoff: parametrize mass scale of intermediate reson. (Λ2

D ≈ 1 GeV2)
ΓD(q2) effective width, constraint to ΓD(0) = 0

Gilberto Ramalho (IIP/UFRN, Natal,Brazil) SL and TL e.m. baryon FF Estoril, October 9, 2015 37 / 55

+	 +	

Pion cloud component 
supressed for high Q2 
 

Model dependence? 

1
Q8

For low Q2 : add coupling with pion in flight. 
 Bare	quark		

component	 	Pion	cloud	

Pion	created	by	the	overall	baryon,		
not	from	a	single	quark	

			pairs		from	a	single	quark		
			included	in	dressing	

qq̄



Separation seems to be supported by experiment. 
Missing strength of GM at the origin is an universal feature, even in 
dynamical quark calculations. 

γN→Δ

Model independent feature 

Eichmann et al., Prog. Part. Nucl. Phys. 91 (2016)c 

Effect of vicinity of the 
mass pole of the Delta to 
the pion-nucleon 
threshold. 
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FIG. 2: Results for the γ∗N → ∆ transition. Data shown
are for the γ∗p → ∆+ reaction, from DESY [62], SLAC [63],
CLAS/JLab [64] and MAID analysis [65, 66]. Data for the large
Q2 region from CLAS/JLab are not included [77]. EBAC results
are from Ref. [68].

B. Symmetry between different transitions

Roughly, we can classify the results for the γ∗B → B′

transition form factors according to the magnitudes of
magnetic dipole form factor G∗

M :

large : γ∗N → ∆, γ∗Λ → Σ∗0,

γ∗Σ+ → Σ∗+, γ∗Ξ0 → Ξ∗0,

moderate : γ∗Σ0 → Σ∗0,

small : γ∗Σ− → Σ∗−, γ∗Ξ− → Ξ∗−.

This classification has an implication for the magnitudes
of the decay widths as we will see in the next section.
The observed magnitudes for G∗

M mainly reflect the
dominant valence quark structure, although modified by
the effect of the pion cloud. As mentioned in Sec. III A
based on Table III, except for the deviations due to the
mass differences, we can expect similar results for the
γ∗Σ+ → Σ∗+ and γ∗Ξ0 → Ξ∗0 transitions. The same
holds for the reactions γ∗Σ− → Σ∗− and γ∗Ξ− → Ξ∗−.
We compare the results for these reactions directly in
Fig. 6.
Note in Fig. 6, the closeness between the results for the

two reactions both for the bare (dashed lines) and the
total (solid lines). These results are the consequences
of the following two effects: similarity in the valence
quark structure, and identical contribution from the pion
cloud contributions (see Table V). Concerning the va-
lence quark contributions, the similarity in the results of
the two reactions is a combination of the identical tran-
sition current coefficients (jSi ) and the kinematics. In
fact, although the mass configurations are different for
the γ∗Σ → Σ∗ and γ∗Ξ → Ξ∗ reactions, the transition
three-momentum |q| at Q2 = 0 in the baryon B′ rest
frame, are almost the same, 0.18 GeV and 0.20 GeV re-
spectively.
The difference in magnitude between the two sets,

(γ∗Σ+ → Σ∗+, γ∗Ξ0 → Ξ∗0) and (γ∗Σ− → Σ∗−,

Gb
M (0) Gπ

M (0) G∗
M (0) |G∗

M (0)|exp
γ∗p → ∆+ 1.63 1.32 2.95 3.04± 0.11 [4]

γ∗n → ∆0 1.63 1.32 2.95 3.04± 0.11 [4]

γ∗Λ → Σ∗0 1.68 0.92 2.60 3.35± 0.57 [4]

γ∗Σ+ → Σ∗+ 2.09 0.26 2.35 4.10± 0.57 [5]

γ∗Σ0 → Σ∗0 0.97 0.00 0.97

γ∗Σ− → Σ∗− −0.15 −0.26 −0.42 < 0.8 [8]

γ∗Ξ0 → Ξ∗0 2.19 0.26 2.46

γ∗Ξ− → Ξ∗− −0.17 −0.26 −0.43

TABLE VI: Results for G∗
M (0). Values for |G∗

M (0)|exp are es-
timated by Eq. (4.1) using the experimental values of ΓB′→γB .

γ∗Ξ− → Ξ∗−) in our model, is a consequence of the ap-
proximate SU(3) symmetry. Furthermore, as commented
in Sec. III A, a model with the exact SU(3) symmetry
limit would give no contribution for the last two reac-
tions. In contrast, the small violation of the symmetry,
in particular in the SU(2) sector due to the asymmetry
between the isoscalar and isovector quark form factors
f±(Q2), is the reason why the present model is success-
ful in the description of the neutron electric form fac-
tor [34, 35, 39]. In other approaches the small magnitude
of the G∗

M results for the γ∗Σ− → Σ∗− and γ∗Ξ− → Ξ∗−

reactions, can be a consequence of U -spin symmetry [9].
We can also study the relation between the transitions

γ∗N → ∆ and γ∗Λ → Σ∗0 based on the similarity sug-
gested by the valence quark structure given in Table III.
From Table III, we may conclude that the transition form
factors between the γ∗Λ → Σ∗0 and γ∗N → ∆ reactions

differ by a factor
√

3
4 , if only the valence quark con-

tributions are considered. We examine this in Fig. 7,
by comparing the form factor of γ∗N → ∆ to that of

γ∗Λ → Σ∗0 multiplied by
√

4
3 . However, the results

must be interpreted with care. Focusing on the final
results (total, solid lines), the similarity between the re-
sults for the two reactions is an accidental combination of
a large pion cloud effect and a smaller core contribution
for the γ∗N → ∆ reaction, and the opposite, a smaller
pion cloud effect and a larger core contribution for the
γ∗Λ → Σ∗0 reaction. The symmetry properties should be
better observed in the bare contributions (dashed lines).
In fact, the two dashed lines have a similar shape, but
differ in magnitudes by about 20% near Q2 = 0. This is
a consequence of the differences in the masses and radial
wave functions.
Then, we conclude that the closeness between the total

results for the γ∗N → ∆ and γ∗Λ → Σ∗0 reactions, also
predicted by the U -spin symmetry, is accidental, since
the pion cloud contributions should break the symmetry
appreciably. In fact, for the γ∗N → ∆ reaction, the pion
cloud contribution is 80% of the quark core contribution,
while in the γ∗Λ → Σ∗0 reaction, the pion contribution is
55%. Note that, the U -spin symmetry takes into account

Separation seems to be supported by experiment. 
Missing strength of GM at the origin is an universal feature. 

γN→Δ

Model independent feature 

Effect of vicinity of the 
mass pole of the Delta to 
the pion-nucleon 
threshold. 
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Bare quark core: 
•  dominates large 
    region. 
•  agrees with  
EBAC analysis. 
 

 

Q2

CST© 
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�Baryon wavefunction reduced to an effective quark-diquark structure 
due to the s integration. 
 
�E.M. matrix element can be written in terms of an effective baryon  
composed by an off-mass-shell quark and an on-mass-shell quark pair 
(diquark) with an average mass. 
 

E.M. matrix element  
Integrate	in	the	relaAve	
momentum	of	the	
diquark	



 
�A quark+ scalar-diquark component  
	
�A quark+ axial vector-diquark component  
 
	
	
	
	

	
	

Delta	wave	funcAon	
	

�A quark+ only axial vector-diquark term contributes 
	

Phenomenological	funcAon	
quark-diquark	momentum	
distribuAon		

Wave functions 

							Nucleon	wave	funcAon	



E.M.	Current	

�
Quark	form	factors				adjusted		
to	quark	charges	and		
anomalous	magneAc	moments,	
such	that	experimental	magneAc	
moments	of	the	nucleons	are	reproduced.	

f



E.M.	Current	

Processes	where	pions	are		
created	and	absorbed		
by	the	same	quark	are	included	in	the	
consAtuent	quark	internal	structure,		
and	thus	included	in	the	quark	current.		
	

�



E.M.	Current	

4

FIG. 4: Electromagnetic current to the quark. The first term
is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.

where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
tors ji (i = 1, 2) has an isoscalar and an isovector com-
ponent, respectively fi+ and fi� (functions of Q

2, the
4-momentum transfer squared), ji =

1
6fi+ + 1

2fi�⌧3.
The inclusion of the second term in the second equation

in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]

f1±(Q
2) = �q + (1 � �q)

m

2
v

m

2
v +Q

2
+ c±

M

2
hQ

2

(M2
h +Q

2)2

f2±(Q
2) = ±

⇢
d±

m

2
v

m

2
v +Q

2
+ (1 � d±)

M

2
h

M

2
h +Q

2

�
,

(2.4)

where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z

d

4
q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q

2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon

4
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respond to quark-antiquark excitations and the black dot ver-
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gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.
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gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.
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where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]

�µ(p,Q) = �µ + (2.5)
Z
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4
q

(2⇡)4
K(p, q,Q)S(q + ⌘Q)�µ(q,Q)S(q � ⌘Q)

where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.
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The connection to LQCD arises from the following re-
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for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
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mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
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2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
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experimental data, however, the reverse was not true (by
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ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
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is the coupling of the photon to a bare quark. The loops cor-
respond to quark-antiquark excitations and the black dot ver-
tices to the quark-antiquark interaction kernel. The diagram
gives a representation of the inhomogeneous Bethe Salpeter
equation (2.5) for the quark-photon vertex.
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in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
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where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.
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eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
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where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.
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for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
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2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts
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in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]
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where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
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where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.
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The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
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2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts
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respond to quark-antiquark excitations and the black dot ver-
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gives a representation of the inhomogeneous Bethe Salpeter
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where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
tors ji (i = 1, 2) has an isoscalar and an isovector com-
ponent, respectively fi+ and fi� (functions of Q

2, the
4-momentum transfer squared), ji =
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The inclusion of the second term in the second equation

in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]
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where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]
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where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q

2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts
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gives a representation of the inhomogeneous Bethe Salpeter
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where M is the nucleon mass, j1 and j2 are the Dirac
and Pauli quark form factors. Each of these form fac-
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ponent, respectively fi+ and fi� (functions of Q

2, the
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in (2.3) is equivalent to using the Landau prescription for
the electromagnetic current Jµ

NR. Since the phenomeno-
logical wave functions of the baryons include the propa-
gators of the quark interacting with the photon in Fig.
3, that term guarantees current conservation.

The explicit forms of the Dirac and Pauli quark form
factors, f1± and f2±, are chosen to be consistent with the
mechanism of vector meson dominance, depicted in Fig.4.
VMD motivates the following parametrization [23, 27]
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where mv is a light vector meson mass, Mh is a mass of
an e↵ective heavy vector meson, ± are quark anoma-
lous magnetic moments. The mixture coe�cients c±, d±
are phenomenologically fixed by the proton and neutron
elastic electromagnetic form factors. The parameter �q

is related to the quark density number and fixed by deep
inelastic scattering data. In the applications mv = m⇢

(' m!) to include the physics associated with the ⇢-pole
and Mh = 2M (twice the nucleon mass) to take into
account e↵ects of meson resonances with a larger mass.
The quark form factors are moreover normalized to re-
produce the charge and anomalous magnetic moment of
the u and d quarks.

The CST phenomenological choice for a VMD param-
eterization of the current, as represented in Fig. 4, is

consistent with the inhomogeneous Bethe-Salpeter equa-
tion that is to be solved to find the quark-photon vector
vertex �µ [30]
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where ⌘ gives the momentum sharing in the initial and
final quark, K is the quark-antiquark interaction, S is
the quark propagator. It becomes clear from (2.5) how
the meson spectrum ties with the behavior of the quark-
photon coupling. The iterations to all orders of the in-
teraction kernel K (the first iterations are represented in
Fig. 4) are summed by the integral equation.Therefore
for timelike kinematics the vector meson bound states
appear as poles of the vector interaction vertex.

B. Connection of the model to LQCD

The connection to LQCD arises from the following re-
alizations [31, 32]: i) the pion cloud e↵ects are negligible
for large unphysical pion masses, ii) since the electro-
magnetic quark current within the CST model is built
from the mechanism of vector meson dominance, and
the vector meson mass is a function of the running pion
mass, the bare quark core model can be calibrated by the
LQCD data for large pion masses, iii) by taking the limit
of the model back to the physical pion mass value, the ex-
perimental data is well described in the high momentum
transfer Q2 region.
It was in the N� ! �(1232) excitation that this

connection was first checked in practice [31, 32]. The
�(1232) wave function was fixed by calibrating it to the
LQCD results for the three N� ! �(1232) electromag-
netic form factors, and this calibration made use of a
running pion mass to vary the ⇢ meson mass. In ad-
dition, the assumption was made that for all the three
form factors of the reaction the contributions from the
constituent quark core and from the pion cloud are to
be added. This is supported by the experimental data
for the dominant form factor, GM [27]. Therefore, by
subtracting the experimental data from the CST con-
stituent quark model, we could make estimations for the
pion cloud e↵ects, which were non-zero in the vicinity of
Q

2 ⇡ 0. Important conclusions are: i) by first fitting
the form factors to the LQCD data and then restoring
back the physical pion mass value, one could predict the
experimental data, however, the reverse was not true (by
fitting the physical data one does not succeed describ-
ing the LQCD data), ii) although the experimental data
alone does not fix the weight of the D wave component
in the �(1232) wave function at a reasonable value, the
LQCD data does.
Finally, the information that the CST model extracts

on the pion cloud contribution to the �(1232) electroex-
citation is consistent with the EBAC (Excited Baryon
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Fig. 7 At the right: comparison with EBAC estimate of bare core [34]. At the left:
extrapolation to the lattice QCD regime with mπ = 490 MeV. Lattice data from Ref. [71].

Since the experimental value is G∗
M (0) ≃ 3.02 [49], one can conclude that

near Q2 = 0, the model underestimate the data in about 37%. Note that this
estimate provide only an upper limit, and that in the numerical calculations,
one can have even larger underestimations [7,31].

From the previous discussion, we can conclude that the covariant spectator
quark model provides a natural explanation for the underestimation of the data
at low Q2, when we consider only the valence quark degrees of freedom. In
order to explain the missing strength, one needs to take into account explicit
contributions of the pion cloud effects, as concluded from the use of dynamical
baryon-meson reaction models [2,7,34,35,36].

Before explaining how one can parametrize the pion cloud effects, one needs
to discuss how we can parametrize the of the nucleon and the ∆(1232) wave
functions. As discussed in Sect. 2, the structure of the nucleon can be described
within the covariant spectator quark model, considering an SU(6) structure
for the S-state wave function, and a parametrization for the quark current
(1) [6]. As for the nucleon, we consider also an S-state structure associated
with a radial wave function ψ∆ [7,8,11]. The question is, how to determine the
function ψ∆, since, contrarily to the nucleon elastic form factors, the radial
wave function cannot be adjusted directly to the empirical data, because the
data is strongly contaminated by pion cloud effects.

One are then left with two options: i) calibrate the data by some estimate
from the valence quark core contributions to the transition form factors; ii)
calibrate the model by lattice QCD simulations for large pion masses, where
the meson cloud effects are suppressed.

The first option can be implemented using the estimate of the quark core
contributions performed with the assistance of the Sato-Lee/EBAC model,
nowadays known as Argonne-Osaka model [33,34,37,46]. The second option
requires an intermediate step, the extension of the covariant spectator quark
model from the physical regime to the lattice QCD regime. This extension
can be performed taking advantage of the definition of the quark currents
in terms of the hadron masses (vector mesons and nucleon mass) and also
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E.M.	Current		and	TFF	at	the	photon	point	

D. Properties of the wave functions under a Lorentz
transformation

The form for the wave functions given in Eq. (2.39)
holds only for the case where the particle is moving along

the z direction [with 4-momentum P¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

HþP2
q

;0;0;PÞ].
The generic wave function can be obtained from an arbi-
trary Lorentz transformation !

P0! ¼ !!
"P": (2.46)

Under a Lorentz transformation we obtain

"!P0 ¼!!
" ""P w0

#ðP0Þ ¼!#
$Sð!Þw$ðPÞ

u0ðP0Þ ¼ Sð!ÞuðPÞ D$#ðP0; k0Þ ¼!$
%!#

&D%&ðP;kÞ
S%1ð!ÞðP 0

SÞ$#Sð!Þ ¼!$
%!#

&ðP SÞ%&; (2.47)

where u0 and w0
# represent the states in the arbitrary frame.

For simplicity, the dependence of the spinor states on the
Wigner rotations acting on the polarization vectors has not
been shown explicitly, and ðP SÞ are the projectors of (2.25)
with ðP 0

SÞ the same projectors with P0 ¼ !P, one obtains
the transformation law

Z 0
#ðP0; k0Þ ¼ Sð!Þ!#

$Z$ðP; kÞ (2.48)

for any vector-spinor state Z. Finally, from (2.48) the
transformation laws for the total " wave function follows

#0
"ðP0; k0Þ ¼ Sð!Þ#"ðP; kÞ: (2.49)

In conclusion, we may derive the baryon wave function
in any frame, where the four-momentum P is arbitrary, by
means of a Lorentz transformation ! on the wave function
defined in the baryon rest frame.

III. FORM FACTORS FOR THE !N ! !
TRANSITION

A. Definitions

The electromagnetic N" transition current is

J! ¼ $w#ðPþÞ%#!ðP; qÞ'5uðP%Þ(I0I; (3.1)

where Pþ (P%) is the momentum of the " (nucleon), I0 (I)
the isospin projection of the " (nucleon), and the operator
%#" can be written in general [93] as

%#!ðP; qÞ ¼ G1q
#'! þG2q

#P! þG3q
#q! %G4g

#!:

(3.2)

Although we have omitted the helicity indices for these
states, the transition current depends on both the helicities
of the final and initial baryons and on the photon helicity.
The variables P and q are, respectively, the average of
baryon momenta and the absorbed (photon) momentum

P ¼ 1

2
ðPþ þ P%Þ q ¼ Pþ % P%: (3.3)

The form factors Gi, i ¼ 1; . . . ; 4 are functions of Q2 ¼
%q2 exclusively. Because of current conservation,
q!%

#! ¼ 0, only three of the four form factors are inde-
pendent. In particular, we can writeG4 in terms of the other
three form factors as

G4 ¼ ðMþmÞG1 þ
M2 %m2

2
G2 %Q2G3; (3.4)

and adopt the structure originally proposed by Jones and
Scadron [93]. Alternatively (see below), we can writeG3 in
terms of the other three

G3 ¼
1

Q2

"
ðMþmÞG1 þ

M2 %m2

2
G2 %G4

#
: (3.5)

The parametrization (3.2) in terms of the form factorsGi

is not the most convenient one for comparison with the
experimental data. More convenient are the magnetic di-
pole (M), electric quadrupole (E), and Coulomb quadru-
pole (C) form factors. These can be defined directly in
terms of helicity amplitudes [16,93]. Note that the form
factor G3 does not enter directly into the expressions for
the helicity amplitudes because )!&

* q! ¼ 0 for all *. But, if
we use the constraint (3.4) to eliminate G4, G3 appears in
these expressions and we obtain

G&
MðQ2Þ ¼ +

$
½ð3MþmÞðMþmÞ þQ2(G1

M

þ ðM2 %m2ÞG2 % 2Q2G3

%
; (3.6)

G&
EðQ2Þ ¼ +

$
ðM2 %m2 %Q2ÞG1

M
þ ðM2 %m2ÞG2

% 2Q2G3

%
; (3.7)

G&
CðQ2Þ ¼ +f4MG1 þ ð3M2 þm2 þQ2ÞG2

þ 2ðM2 %m2 %Q2ÞG3g; (3.8)

where

+ ¼ m

3ðMþmÞ : (3.9)

These three form factors G&
a (a ¼ M, E, C) are, respec-

tively, the magnetic, electric and Coulomb (or scalar)
multipole transition form factors.
As G&

M dominates at low momentum Q2, the following
ratios are useful

REMðQ2Þ ¼ % G&
EðQ2Þ

G&
MðQ2Þ ; (3.10)

and

RSMðQ2Þ ¼ % jqj
2M

G&
CðQ2Þ

G&
MðQ2Þ ; (3.11)
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     E.M. Current has to be conserved 

Orthogonality between initial and final states necessarily follows from 
both requirements, giving an important constraint to Gc at Q2=0. 
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Amplitudes this behavior may be missed. 
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Fig. 4. Electric and Coulomb quadrupole form factors for the γ ∗N → "(1232)

transition. At the top: MAID2007 parametrization [8]. At the bottom: improved 
parametrization consistent with the Siegert’s theorem [11]. Data from Ref. [17]. See 
details in Ref. [11].

MAID-SG parametrization). In this case, one can see the conver-
gence of G E to κ GC at the pseudo-threshold. The γ ∗N → "(1232)

transition form factors and their relation with the Siegert’s theo-
rem are discussed in detail in Ref. [11].

6. Summary and conclusions

In the present article we discuss the implications of the con-
straints in the γ ∗N → N(1535) helicity amplitudes, when the 
nucleon and the resonance N(1535) are both at rest (pseudo-
threshold limit). In this limit the transverse (A1/2) and the longi-
tudinal (S1/2) amplitudes are related by the Siegert’s theorem (2). 
We concluded, that the Siegert’s theorem is the consequence of the 
orthogonality between the nucleon and resonance states.

From the analysis of the structure of the current and the tran-
sition form factors, we conclude also, that, the amplitudes A1/2
and S1/2/|q| are both finite and non-zero in the pseudo-threshold 

limit [recall Eq. (16) with F̃1 = O(1)]. Based on this result, we ex-
plain why the MAID2007 parametrization for the amplitudes A1/2
and S1/2 violates the Siegert’s theorem, and propose an alterna-
tive parametrization, consistent with both the Siegert’s theorem 
and the data. The new parametrization is similar to the MAID2007 
parametrization for both amplitudes when Q 2 > 1.5 GeV2, but 
deviates from MAID2007 for smaller values of Q 2. In the new 
parametrization, the amplitude S1/2 differs more significantly from 
the MAID2007 parametrization for Q 2 < 0, and vanishes at the 
pseudo-threshold as expected (S1/2 ∝ |q|).

We concluded also, that, the Dirac and Pauli form factors are 
free of singularities at the pseudo-threshold as expected from the 
Siegert’s theorem, expressed under the condition A1/2 − λS1/2/
|q| = O(|q|2), near the pseudo-threshold.

The methods proposed in this article to study the structure of 
the helicity amplitudes and the structure of the transition form 
factors in the γ ∗N → N(1535) transition, can be extended for the 
transitions γ ∗N → "(1232), γ ∗N → N(1520) [11] and others.
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 Siegert’s theorem and with the empirical data of the γ!N →

Δð1232Þ quadrupole form factors.
We conclude first that the relations (3)–(4) implies that

Siegert’s theorem is violated by terms Rpt ¼ Oð1=N2
cÞ,

which may be a sizable error in the case Nc ¼ 3. Since the
relations (3)–(4) are extrapolated from large Nc, they can
have relative deviations of the order 1=N2

c. We then use
the constraints of Siegert’s theorem to modify the relation
for GE. We obtain parametrizations for the quadrupole
form factors that violate Siegert’s theorem only by terms
Rpt ¼ Oð1=N4

cÞ. This result is thus compatible with
Siegert’s theorem apart from the higher-order corrections
in 1=N2

c.
We look also for additional contributions for the tran-

sition form factors GE and GC, namely the contributions
from the valence quarks from the nucleon and Δð1232Þ
systems. As mentioned, those contributions are small in the
context of quark models but combined with the para-
metrizations of the pion cloud contributions they can
reduce the gap between theory and data. An interesting
propriety of the valence quark contributions for the electro-
magnetic form factors is that they vanish in the pseudo-
threshold limit, as consequence of the orthogonality
between the nucleon and Δð1232Þ wave functions. As a
consequence, the test of Siegert’s theorem condition
Rpt ¼ 0 needs to be tested only for the pion cloud
contribution of the transitions form factors.
At the end, we combine valence and pion cloud con-

tributions using a model compatible with Siegert’s theorem
apart from the higher-order corrections in 1=N2

c. The results
are then compared with the empirical data for GE and GC,
showing a fair description of the overall data.

II. PION CLOUD CONTRIBUTIONS

We can test the quality of the relations (3)–(4) comparing
those functions with the data based on some parametriza-
tion for GEn. To represent the electric form factor of the
neutron, we consider the Galster parametrization [22]

GEnðQ2Þ ¼ −μn
aτN

1þ dτN
GD; ð5Þ

where μn ¼ −1.913 is the neutron magnetic moment,
τN ¼ Q2

4M2, GD ¼ 1=ð1þQ2=0.71Þ2 is the dipole factor,
and a, d are two dimensionless parameters.
The quadrupole form factors obtained with the param-

eters a ¼ 0.9 and d ¼ 2.8 [11] are presented in Fig. 1. For a
better test of Siegert’s theorem we multiply the functionGC
and the data for GC by κ. The calculations are compared
with the data from Mainz [13], MIT-Bates [23], and
Jefferson Lab [24] for finite square momentum transfer,
Q2, and the world average from the Particle Data Group for
Q2 ¼ 0 [25]. The data are compiled in Ref. [26].

It is clear in Fig. 1 that, the difference between the
parametrizations for GE and κGC is not zero in the
pseudothreshold limit, when Q2 ≃ −0.1 GeV2. This result
implies that Siegert’s theorem is violated, becauseRpt ≠ 0.
The explicit calculation of the deviation using GEnðQ2

ptÞ≃
− 1

6 r
2
nQ2

pt, gives

Rpt ≃ −
!
M
MΔ

"
3=2 r2n

12
ffiffiffi
2

p Q2
pt: ð6Þ

Since Q2
pt ¼ −ðMΔ −MÞ2 and MΔ −M ¼ Oð1=NcÞ, we

can conclude that Rpt ¼ Oð1=N2
cÞ. Although a result

Oð1=N2
cÞ may be seen as a small quantity, the numerical

value is still sizable, as we can see in the graph for
R ¼ GE − κGC at the pseudothreshold (Rpt).

III. VALENCE QUARK CONTRIBUTIONS

Before discussing how to improve the pion cloud para-
metrization of the quadrupole form factors GE and GC, we
may question if Siegert’s theorem can in fact be verified for
the valence quark sector.
We look then for the results obtained within valence

quark models. We consider, in particular, the covariant
spectator quark model developed in Refs. [3,16,27–29] for
the nucleon and Δð1232Þ systems. The basic assumptions
of the model are that (i) in the electromagnetic interaction
the photon couples with the single quark (impulse approxi-
mation) while the other two quarks can be interpreted as an
effective diquark, (ii) the quarks have their own internal
structure (dressed by gluons and quark-antiquark states),
and (iii) the radial quark-diquark wave functions are
calibrated in terms of momentum range parameters that
can be estimated by physical or lattice QCD data.
Concerning the nucleon and Δð1232Þ systems the model

is quite successful in the description of the data. The
parameters associated with the quark structure (quark
electromagnetic form factors) were first fixed by the
nucleon elastic form factor data [28]. After that the model

0 0.5 1 1.5 2
Q

2
 (GeV

2
)

0

0.05

0.1

GE
GE data
κ GC
κ GC data
GE - κ GC

FIG. 1. γ!N → Δ quadrupole form factors estimated by the
pion cloud parametrization of Eqs. (3)–(4). Data from Ref. [26].
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 Siegert’s theorem and with the empirical data of the γ!N →

Δð1232Þ quadrupole form factors.
We conclude first that the relations (3)–(4) implies that

Siegert’s theorem is violated by terms Rpt ¼ Oð1=N2
cÞ,

which may be a sizable error in the case Nc ¼ 3. Since the
relations (3)–(4) are extrapolated from large Nc, they can
have relative deviations of the order 1=N2

c. We then use
the constraints of Siegert’s theorem to modify the relation
for GE. We obtain parametrizations for the quadrupole
form factors that violate Siegert’s theorem only by terms
Rpt ¼ Oð1=N4

cÞ. This result is thus compatible with
Siegert’s theorem apart from the higher-order corrections
in 1=N2

c.
We look also for additional contributions for the tran-

sition form factors GE and GC, namely the contributions
from the valence quarks from the nucleon and Δð1232Þ
systems. As mentioned, those contributions are small in the
context of quark models but combined with the para-
metrizations of the pion cloud contributions they can
reduce the gap between theory and data. An interesting
propriety of the valence quark contributions for the electro-
magnetic form factors is that they vanish in the pseudo-
threshold limit, as consequence of the orthogonality
between the nucleon and Δð1232Þ wave functions. As a
consequence, the test of Siegert’s theorem condition
Rpt ¼ 0 needs to be tested only for the pion cloud
contribution of the transitions form factors.
At the end, we combine valence and pion cloud con-

tributions using a model compatible with Siegert’s theorem
apart from the higher-order corrections in 1=N2

c. The results
are then compared with the empirical data for GE and GC,
showing a fair description of the overall data.

II. PION CLOUD CONTRIBUTIONS

We can test the quality of the relations (3)–(4) comparing
those functions with the data based on some parametriza-
tion for GEn. To represent the electric form factor of the
neutron, we consider the Galster parametrization [22]

GEnðQ2Þ ¼ −μn
aτN

1þ dτN
GD; ð5Þ

where μn ¼ −1.913 is the neutron magnetic moment,
τN ¼ Q2

4M2, GD ¼ 1=ð1þQ2=0.71Þ2 is the dipole factor,
and a, d are two dimensionless parameters.
The quadrupole form factors obtained with the param-

eters a ¼ 0.9 and d ¼ 2.8 [11] are presented in Fig. 1. For a
better test of Siegert’s theorem we multiply the functionGC
and the data for GC by κ. The calculations are compared
with the data from Mainz [13], MIT-Bates [23], and
Jefferson Lab [24] for finite square momentum transfer,
Q2, and the world average from the Particle Data Group for
Q2 ¼ 0 [25]. The data are compiled in Ref. [26].

It is clear in Fig. 1 that, the difference between the
parametrizations for GE and κGC is not zero in the
pseudothreshold limit, when Q2 ≃ −0.1 GeV2. This result
implies that Siegert’s theorem is violated, becauseRpt ≠ 0.
The explicit calculation of the deviation using GEnðQ2

ptÞ≃
− 1

6 r
2
nQ2

pt, gives

Rpt ≃ −
!
M
MΔ

"
3=2 r2n

12
ffiffiffi
2

p Q2
pt: ð6Þ

Since Q2
pt ¼ −ðMΔ −MÞ2 and MΔ −M ¼ Oð1=NcÞ, we

can conclude that Rpt ¼ Oð1=N2
cÞ. Although a result

Oð1=N2
cÞ may be seen as a small quantity, the numerical

value is still sizable, as we can see in the graph for
R ¼ GE − κGC at the pseudothreshold (Rpt).

III. VALENCE QUARK CONTRIBUTIONS

Before discussing how to improve the pion cloud para-
metrization of the quadrupole form factors GE and GC, we
may question if Siegert’s theorem can in fact be verified for
the valence quark sector.
We look then for the results obtained within valence

quark models. We consider, in particular, the covariant
spectator quark model developed in Refs. [3,16,27–29] for
the nucleon and Δð1232Þ systems. The basic assumptions
of the model are that (i) in the electromagnetic interaction
the photon couples with the single quark (impulse approxi-
mation) while the other two quarks can be interpreted as an
effective diquark, (ii) the quarks have their own internal
structure (dressed by gluons and quark-antiquark states),
and (iii) the radial quark-diquark wave functions are
calibrated in terms of momentum range parameters that
can be estimated by physical or lattice QCD data.
Concerning the nucleon and Δð1232Þ systems the model

is quite successful in the description of the data. The
parameters associated with the quark structure (quark
electromagnetic form factors) were first fixed by the
nucleon elastic form factor data [28]. After that the model
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FIG. 1. γ!N → Δ quadrupole form factors estimated by the
pion cloud parametrization of Eqs. (3)–(4). Data from Ref. [26].
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FIG. 1: GE and GC form factors. Data from Refs. [21, 33, 38–41].

Recall that κ = M∆−M
2M∆

.

(solid circles and diamonds). The results for GC are
multiplied by κ for convenience. In the figure one can
notice the convergence of the two lines at the lowest
Q2 point (pseudothreshold) proving the consistency with
Siegert’s theorem. To this success contribute the pion
cloud parametrizations for the form factors GE and GC

discussed next, as well as the valence quark contributions
discussed later. The inclusion of the valence quark con-
tributions compensates the underestimation associated
with the pion cloud parametrizations [26, 32, 33, 36].
The structure of the internal structure of the baryons

can be interpreted as a combination of the large Nc limit,
with SU(6) quark models with two-body exchange cur-
rents [29, 31]. The SU(6) symmetry breaking induces an
asymmetric distribution of charge in the nucleon which
generates non-zero results for the neutron electric form
factor as shown in constituent quark models such as the
Isgur-Karl model [17, 42] and others [3, 27, 28]. Us-
ing the SU(6) symmetry breaking one can show that
the γ∗N → ∆(1232) quadrupole moments are propor-
tional to the neutron square charge radius (r2n) [16, 26–
28, 30, 43, 44].
Using the low Q2 expansion of the neutron electric

form factor, GEn ≃ − 1
6r

2
nQ

2, we can represent the Q2 de-
pendence of the quadrupole form factors in the form [26–
31]:

Gπ
E(Q

2) =

(

M

M∆

)3/2 M2
∆ −M2

2
√
2

G̃En(Q2)

1 + Q2

2M∆(M∆−M)

,

(2)

Gπ
C(Q

2) =

(

M

M∆

)1/2 √
2M∆MG̃En(Q

2), (3)

where G̃En = GEn/Q2. The previous relations were de-
rived directly from the large Nc limit [26], apart the de-
nominator of the factor G̃En in Eq. (2). This denomi-
nator is included in the present work in order to satisfy

Siegert’s theorem (1), exactly. Note that in the limit
Q2 → 0 the extra factor reduces to the unit, and we
recover the original result from large Nc limit [26]. At

the pseudothreshold: 1 + Q2

2M∆(M∆−M) = M∆+M
2M∆

, which

leads directly to Eq. (1). Since in the large Nc limit
M∆ − M = O(1/Nc), and M∆ = O(Nc), the present
form for Gπ

E corresponds to a correction O(1/N2
c ) rela-

tive to the original form of Gπ
E presented in Ref. [26], at

the pseudothreshold.
In a previous work [32], a similar expression was con-

sidered for Gπ
E , which describes Siegert’s theorem with

an error of the order 1/N4
c . The new expression for Gπ

E
improves the previous result with the exact description
of Siegert’s theorem (all orders of 1/Nc). Compared to
the form presented in Ref. [32], we include a correction
O(1/N4

c ) at the pseudothreshold [45].
To describe the neutron electric form factor we con-

sider the Galster parametrization [46]:

GEn(Q
2) = −µn

aτN
1 + dτN

GD, (4)

where µn = −1.913 is the neutron magnetic moment,

τN = Q2

4M2 , GD = 1/(1+Q2/0.71)2 is the dipole form fac-
tor, and a, d are two dimensionless parameters. In Fig. 1,
we use a = 0.9 and d = 2.8, a parametrization that de-
scribes very well the neutron electric form factor data. In
a separated work we study alternative parametrizations
for GEn [47].
The theoretical estimates presented in Fig. 1 are com-

pared with data from Mainz [21, 38], MIT-Bates [39] and
Jefferson Lab [40] for finite Q2, and the world average
from the Particle Data Group at Q2 = 0 [41] (empty
diamonds and circles). The new data at Q2 = 0.06,
0.13 GeV2 for GE and Q2 = 0.04, 0.06, 0.13 GeV2

for GC are from JLab/Hall A [33] (solid diamonds and
circles). To convert the new data for the electromag-

netic ratios REM ≡ − GE

GM
and RSM ≡ − |q|

2M∆

GC

GM
into

GE and GC , we use the MAID2007 parametrization for
GM : GM = 3

√
1 + τ(1 + a1Q2)e−a4Q

2

GD, where τ =
Q2

(M∆+M)2 , a1 = 0.01 GeV−2 and a4 = 0.23 GeV−2 [35].
The larger errorbars associated with the new data are
mainly the consequence of the different model descrip-
tions of the background [33].
The pion cloud contributions for the γ∗N → ∆(1232)

quadrupole form factors given by Eqs. (2)-(3) can be
complemented by small valence quark contributions to
the respective form factors (around 10%, near Q2 = 0).
As discussed in Ref. [32], those contributions are nat-
urally consistent with Siegert’s theorem. The valence
quark contributions to the γ∗N → ∆(1232) quadrupole
form factors are produced by the high angular momen-
tum components in the nucleon and/or ∆(1232) wave
functions. As a consequence of the orthogonality between
the nucleon and ∆(1232) states, the valence quark con-
tributions to the quadrupole form factors vanish at the
pseudothreshold and the Siegert’s theorem condition is
trivially satisfied [10, 13, 32]. The validity of Siegert’s
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•  Bare quark model gives good description 
        of high        region 
 
 
•  No bare quark contribution to A3/2
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•  Underestimation of GM close to the photon 

point due to overall fit. 
 
 
 
•  Important role of meson cloud; 
dominated by the pion due to the    N and         
channels branching ratios. 
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In our first work in Ref. [20] the meson cloud was
different than the one that we are using here. The reason is
that the meson model associated with Fig. 2(b) was,
meanwhile, reparametrized in Ref. [7] to fix the incorrect
position of the rho mass pole given by our first model, as
well as by other popular parametrizations [7]. In addition,
we notice that, in this new parametrization, the γ!N → Δ
transition pion cloud is directly connected to the pion
electromagnetic form factor Fπðq2Þ, which is well estab-
lished experimentally in the timelike region [7].
The parameters used in the formulas (5.22)–(5.24) were

determined by their fit to the γ!N → N!ð1520Þ spacelike

form factors, giving aM ¼ 5.531 GeV−2, λð4Þπ ¼ −1.019,
λMπ ¼ −0.323, λCπ ¼ −1.678, Λ2

4 ¼ 10.2 GeV2, Λ2
M ¼

1.241 GeV2, and Λ2
C ¼ 1.263 GeV2. The results are pre-

sented in Fig. 3 as a function of Q2 ¼ −q2 and compared
with the spacelike data [48–50]. Check Ref. [20] for a more
detailed discussion of the data. In the figure we also show
the valence quark contributions (the dashed line) and the
meson cloud contributions (the dashed-dotted line) based
on the parametrizations described above.
In the Appendix, we discuss the technical aspects of

the regularization of the singularities appearing in the
multipoles of Eqs. (5.22)–(5.24).

VI. RESULTS

We present in this section our predictions for the
γ!N → N!ð1520Þ transition form factors in the timelike
region. Using these results, we also calculate the γN and
eþe−N decay widths.

A. Form factors

The predictions for the absolute values of the form
factorsGM,GE, andGC in the timelike region are presented
in Fig. 4 for the cases W ¼ 1.52, 1.8, and 2.1 GeV. The
valence quark core contributions are given by the thin lines.
They stand very near the horizontal axis and vanish in the
upper limit, q2 ¼ ðW −MÞ2, by kinematic constraints. The
same result was observed in the quadrupole form factors of
the γ!N → Δð1232Þ transition for the physical case, when
W ¼ MΔ ≃ 1.232 GeV [51].
Figure 4 shows that the meson cloud contribution largely

dominates. Only near the ω pole (q2 ≃ 0.6 GeV2) is there a
significant contribution from the quark core for the absolute
value of the form factors GM and GE. This effect is very
concentrated near q2 ≃m2

ω as a consequence of the small ω
width, Γωðm2

ωÞ.
InGC the effect of the ω pole is not observed. This is due

to the cancellation of the isoscalar contributions to the form
factorGC. This cancellation is obtained analytically and can
be confirmed by substituting the form factors G1, G2, G3

given by Eqs. (5.14)–(5.16) into the formula of Eq. (5.10)
for GC. One concludes that only the quark isovector form
factors, f1− and f2−, contribute to GC.
From Fig. 4, one concludes that a fairly good description

of the γ!N → N!ð1520Þ transition can be obtained without
the valence quark core contributions, which are very small.
The almost perfect coincidence, both forGM andGE, of the
lines corresponding to different values of W is also a
consequence of the dominance of the meson cloud com-
ponent since only the valence part depends on W. Only for
GC can one distinguish a slight W dependence, and this is
evident because the valence quark contributions are non-
zero when q2 ¼ 0. The main role of the mass dependence
W in the behavior of the form factors is then to constrain
them for q2 ≤ ðW −MÞ2.
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FIG. 3. Valence quark core plus meson cloud contributions to
the spacelike form factors as a function of Q2 ¼ −q2. Data come
from Ref. [48] (the full circles), Ref. [49] (the empty circles), and
PDG [50] (the square).
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Dominance of iso-vector channel concurs to our model of the meson cloud: 
pion only   

3

adjustable parameters, since the quark current was deter-
mined in the study of the nucleon electromagnetic form
factors [28] and the radial wave functions are correlated
with the nucleon radial wave functions.

To complement the effect of the valence quark contri-
butions we consider in Sec. III additional contributions
associated with the meson cloud effects.

γ∗N → N(1535) form factors

The γ∗N → N(1535) transition current can be ex-
pressed using units of elementary charge (e), in the form

Jµ = ūR

[

F ∗
1

(

γµ −
̸qqµ

q2

)

+ F ∗
2

iσµνqµ
MR +MN

]

γ5uN ,

(2.10)

where uR and uN are the resonance and nucleon spinors,
respectively. Equation (2.10) defines the elementary form
factors, Dirac (F ∗

1 ) and Pauli (F ∗
2 ) [18, 20, 22].

In the semirelativistic limit, we obtain the following
results [20]:

F ∗
1 (Q

2) =
1

2
(3jS1 + jA1 )IR (2.11)

F ∗
2 (Q

2) = −
1

2
(3jS2 − jA2 )IR. (2.12)

For a detailed discussion of the results check Refs. [20,
21]. The numerical results are presented in Fig. 1.

γ∗N → N(1520) form factors

The γ∗N → N(1520) transition current can be ex-
pressed, in units e, as [23, 24]:

Jµ = ūα [G1 q
αγµ +G2 q

αPµ +G3 q
αqµ −G4g

µν ]uN ,

(2.13)

where uα is the Rarita-Schwinger of the R state, uN is
the nucleon spinor, P = 1

2 (PR + PN ), and the dots in-
dicate gauge terms that are not relevant to the present
discussion. The functions Gi (i = 1, 2, 3) are the elemen-
tary form factors of the transition. The function G4 is a
linear combination of the first three form factors.

Details about the general γ∗N → N(1520) transition
form factors and their relations with the helicity ampli-
tudes are presented in Appendix A. Here we consider the
results in the semirelativistic approximation.

The results for the elementary form factors in the
semirelativistic approximation are [20]:

G1 = −
3

2
√
2

[(

jA1 +
1

3
jS1

)

+

(

jA2 +
1

3
jS2

)]

IR
|q|

,

G2 = +
3

2
√
2M

[

jA2 +
1

3

1− 3τ

1 + τ
jS2 +

4

3
jS1

]

IR
|q|

,

G3 = 0. (2.14)

A1/2(0) F ∗

2 (0) A(0)/B(0)

p 0.150±0.015 0.97±0.14 0.14±0.12

n −0.075±0.020 −0.69±0.19 0.83±0.12

TABLE I: γ∗N → N(1535) transition. Amplitude A1/2(0)

and results for F ∗

2 (0). A1/2(0) is in units 10−3GeV−1/2.

A1/2 A3/2 |A|2

p −0.025±0.005 0.140±0.005 20.2±1.4

n −0.050±0.005 −0.120±0.005 15.7±1.3

TABLE II: N(1520) → γN amplitudes in units 10−3 GeV−1/2

(case Q2 = 0). |A|2 ≡ A2

1/2 +A2

3/2 is in units 10−3 GeV−1.

Based on the expression for G4, given by Eq. (A1) we
conclude that G4 = 0. This result is very important
because it implies that there is no contribution of the
valence quark core to G4, in the context of the covariant
spectator quark model.

For the purpose of the discussion, we note that G1 and
G2 are proportional to IR

|q| and are therefore well defined

at the photon point, according with Eq. (2.8).
The multipole form factors are obtained using the re-

lations [20]

GM = −RQ2
−
G1

MR
, (2.15)

GE = −R
[

4Gmc
4 −Q2

−
G1

MR

]

, (2.16)

GC = −R
[

4MRG1 + (3M2
R +M2

N +Q2)G2

]

,

(2.17)

where R = 1
3

MN

MR−MN
. The relations (2.15)-(2.17) are

converted to the Devenish representation [2], and differ

from the results from Refs. [20, 23, 24] by the factor
√

2
3 .

In Eq. (2.16) we include a term in Gmc
4 , which can

be interpreted as the meson cloud contribution to the
function G4 and it is discussed in Sec. III B.

AV
3/2 ⇡ 0.13 ;AS

3/2 ⇡ 0.01 (GeV �1/2)

PDG data at the photon point: 
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Timelike: |G∗M | - new model

New model: consider the explicit connection with the

microscoptic pion cloud structure – quarks with structure

(a) Coupling with pion on the air:
related with pion electromagnetic form factor Fπ(q2)

(b) Coupling with intermediate baryon states (octet/decuplet):
parametrized effectively by [G̃D(q2)]2 ∝ 1/Q8

G̃D(q2) =
Λ4
D

(Λ2
D − q2) + Λ2

DΓ2
D(q2)

,

Λ2
D cutoff: parametrize mass scale of intermediate reson. (Λ2

D ≈ 1 GeV2)
ΓD(q2) effective width, constraint to ΓD(0) = 0
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The residue of the pion from factor Fπ(q
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(a) related with pion electromagnetic form factor Fπ(q2)  
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Fπ(q2)  



Timelike: |G∗M | - new model (3)

Fρ(q
2) =

m2
ρ

m2
ρ − q2 − 1

π
Γ0
ρ

mπ
q2 log q2

m2
π
+ i

Γ0
ρ

mπ
q2
−→ Fπ(q

2)

Fiting the |Fπ(q2)|2 data

Fπ(q
2) =

α

α− q2 − 1
πβq

2 log q2

m2
π
+ iβq2

α = 0.696 GeV2

β = 0.178 -0.5 0 0.5 1
q2  (GeV2)
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Parametrization of pion Form Factor 

Extension to time like 



Extension to time like Kinematics (γ∗N → N ′) R ≡ N ′

R rest frame
PR = (W, 0, 0, 0); PN = (EN , 0, 0,−|q|); q = (ω, 0, 0, |q|)

Timelike q2 > 0

ω =
W 2 −M2 + q2

2W

|q|2 =
[(W +M)− q2][(W −M)2 − q2]

4W 2

EN =
W 2 +M2 − q2

2W

Spacelike −q2 = Q2 > 0

ω =
W 2 −M2 −Q2

2W

|q|2 =
[(W +M) +Q2][(W −M)2 +Q2]

4W 2

EN =
W 2 +M2 +Q2

2W

TL: q2 ≤ (W −M)2 W ≥M
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Transition form factors in the timelike region are restricted to a given 
kinematic region that depends on the varying resonance mass W. 

Range	of	momentum	is	
restricted	for	each	energy	W.	
	



Extension to time like 

Away from that peak it is the bare quark contribution that
dominates. The flatness of the W ¼ 2.2 GeV curve for
q2 > 1 GeV2 is the net result of the falloff of the pion
cloud and the rise of the quark core terms. In addition, the
figure shows that the dependence on W yields different
magnitudes at the peak, and we recall that this dependence
originates from the bare quark core contribution alone.
This bare quark core contribution is mainly the conse-
quence of the VMD parametrization of the quark current
where there is an interplay between the effect of the ρ pole
and a term that behaves as a constant for intermediate
values of q2 (see Appendix A).
Wewill discuss now the results for the widths Γγ"Nðq;WÞ

of the Δ Dalitz decay, and for the Δ mass distribu-
tion gΔðWÞ.

A. Δ Dalitz decay

The width associated with the Δ decay into γ"N can be
determined from the Δ → γ"N form factors for the Δ mass
W. Assuming the dominance of the magnetic dipole form
factors over the other two transition form factors, we can
write [4,5,34]

Γγ"Nðq;WÞ ¼ α
16

ðW þMÞ2

M2W3

×
ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
y−jG"

Mðq2;WÞj; ð5:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α≃ 1=137 is the fine-structure constant

and y& ¼ ðW &MÞ2 − q2.
At the photon point (q2 ¼ 0), in particular, we obtain the

ΓγN in the limit q2 ¼ 0 from Eq. (5.1) [5,18,35]

ΓγNðWÞ ¼ Γγ"Nð0;WÞ: ð5:2Þ

We can also calculate the derivative of the Dalitz decay
width Γeþe−Nðq;WÞ from the function Γγ"Nðq;WÞ using the
relation [5,18,34,35]

Γ0
eþe−Nðq;WÞ≡ dΓeþe−N

dq
ðq;WÞ

¼ 2α
3πq

Γγ"Nðq;WÞ: ð5:3Þ

The Dalitz decay width Γeþe−Nðq;WÞ is given by

Γeþe−NðWÞ ¼
Z

W−M

2me

Γ0
eþe−Nðq;WÞdq; ð5:4Þ

where me is the electron mass. Note that the integration
holds for the interval 4m2

e ≤ q2 ≤ ðW −MÞ2, where the
lower limit is the minimum value necessary to produce an
eþe− pair, and ðW −MÞ2 is the maximum value available
in the Δ → γ"N decay for a given W value.
The results for dΓeþe−N

dq ðq;WÞ for several mass values W
(1.232, 1.6 and 2.2 GeV) are presented in Fig. 5. These
results are also compared to the calculation given by the
constant form factor model, from which they deviate
considerably.
Also, the Δ decay width can be decomposed at tree level

into three independent channels

ΓtotðWÞ ¼ ΓπNðWÞ þ ΓγNðWÞ þ Γeþe−NðWÞ; ð5:5Þ

given by the decays Δ → πN, Δ → γN and Δ → eþe−N.
The two last terms are described respectively by Eqs. (5.2)
and (5.4). The ΓπN term can be parametrized as in [36,43]

ΓπNðWÞ ¼ MΔ
W

"
qπðWÞ
qπðMΔÞ

#
3 κ2 þ q2πðMΔÞ
κ2 þ q2πðWÞ

Γ0
πN; ð5:6Þ

where Γ0
πN is the Δ → πN partial width for the physical Δ,

qπðWÞ is the pion momentum for a Δ decay with mass W,
and κ a cutoff parameter. Following Refs. [37,38] we took
κ ¼ 0.197 GeV. The present parametrization differs from
other forms used in the literature [5,35] and from our
previous work [4].

FIG. 4. Results for jG"
MðQ2Þj for W ¼ 1.232 GeV,

W ¼ 1.6 GeV,W ¼ 1.8 GeV andW ¼ 2.2 GeV. The thick lines
indicate the final result. The thin lines indicate the contribution of
the core.

FIG. 5. Results for dΓeþe−N
dq ðq;WÞ for three different values of

energies W. The solid line is the result of our model. The dotted
line is the result of the constant form factor model.
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However, in the best fit to the data, the value of α is
corrected by the logarithmic counterterm in the denomi-
nator of Eq. (4.1), that pushes the maximum of jFπðq2Þj2 to
the correct position, q2 ≃ 0.6 GeV2. In the Iachello model,
since β≃ 1.1, the correction is too strong, and the
maximum moves to q2 ≃ 0.3 GeV2, differing significantly
from the jFπðq2Þj2 data.
To describe the physics associated with the ρ-meson, we

restricted the fit to q2 < 0.6 GeV2, which causes a less
perfect description of Fπ at the right side of the peak.
However increasing q2 beyond that point slightly worsens
the fit. This probably indicates that although the ω width is
small, there may be some interference from the ω mass
pole, and that the parameters α and β account for these
interference effects. Although the spacelike data was also
included in the fit, the final result is insensitive to the
spacelike constraints. We obtain also a good description of
the spacelike region (examine the region q2 < 0 GeV2 in
Fig 2). The full extension of the region where a good
description is achieved is −1 GeV2 < q2 < 1 GeV2.
A similar quality of the fit is obtained with both a

constant width or a q2-dependent ρ-width. However a better
fit can be obtained with a more complex q2-dependence,
which accounts better for the ω-meson pole effect, as
shown in previous works [31,32]. Since this work is meant
to probe the quality of the results that one can obtain for the
transitions form factors, the simple analytic form of
Eq. (4.1) suffices for Fπðq2Þ.
In addition, the covariant spectator quark model built

from this function describes well the Δ → γ#N form factor
in the spacelike region as shown in Fig. 3. Using the best fit
of Fπ given by the parameters (4.2) we can calculate the
pion cloud contribution Gπ

Mðq2Þ through Eq. (3.5), and
consequently the result forG#

Mðq2;MΔÞ. For the parameters
λπ and Λ2

π we use the results of the previous works λπ ¼
0.441 and Λ2

π ¼ 1.53 GeV2, obtained from the comparison
of the constituent quark model to the lattice QCD data and
experimental data [4,7,8].
In Fig. 3 we present the result of our model for

jG#
Mðq2;WÞj for the case W ¼ MΔ. In that case the

imaginary contribution (when q2 > 0) is very small and
the results can be compared with the spacelike data
(q2 < 0). In the figure the dashed-dotted-line indicates
the result for GB

Mðq2;MΔÞ discussed in a previous work [4].
In the same figure we show the sensitivity to the cutoff

ΛD of the pion cloud model, by taking the cases Λ2
D ¼

0.71 GeV2 and Λ2
D ¼ 0.90 GeV2. They are consistent with

the data, although the model with Λ2
D ¼ 0.71 GeV2 gives a

slightly better description of the data. The two models are
also numerically very similar to the results of Ref. [4] for
W ¼ MΔ. For higher values of W the results of the present
model and the ones from Ref. [4] will differ.
Although the model with Λ2

D ¼ 0.71 GeV2 gives a
(slightly) better description of the spacelike data, for the
generalization to the timelike region it is better to have a
model with large effective cutoffs when compared with the
scale of the ρmeson pole (the ρmassmρ). This is important
to separate the effects of the physical scales from the
effective scales (adjusted cutoffs).

V. RESULTS

The results for jG#
Mðq2Þj from the covariant spectator

quark model for the casesW ¼ 1.232 GeV,W ¼ 1.6 GeV,
W ¼ 1.8 GeV, and W ¼ 2.2 GeV are presented in Fig. 4.
The thin lines represent the contribution from the bare
quark core component of the model, and the thick line the
sum of bare quark and pion cloud contributions.
In the figure the results for each value W are restricted

by the timelike kinematics through the condition
q2 ≤ ðW −MÞ2, since the nucleon and the resonance (with
mass W) are treated both as being on their mass shells.
Therefore the form factor covers an increasingly larger
region on the q2 axis, as W increases. See Ref. [4] for a
complete discussion.
The figure illustrates well the interplay between the pion

cloud and the bare quark core components. The pion cloud
component is dominating in the region near the ρ peak.

FIG. 2. Fit to jFπðq2Þj2 data using Eq. (4.1). The data are from
Refs. [29,30].

FIG. 3. Results for jG#
Mðq2Þj for the covariant spectator quark

model combined with the pion cloud contribution from Eq. (3.5).
The data are from Refs. [33]. The dashed-dotted-line is the
contribution from the core [4].
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∆ Dalitz decay: ΓγN(W ) and Γe+e−N(W )

Width function Γγ∗N (q;W ) with q =
√

q2

y± = (W ±M)2 − q2

F. Dohrmann et al, ERJA 45, 401 (2010)

Γγ∗N (q;W ) =
α

16

(W +M)2

M2W 3

√
y+y−y−|GT (q

2,W )|2

|GT (q
2;M∆)|2 = |G∗

M (q2;W )|2 + 3|G∗
E(q

2;W )|2 +
q2

2W 2
|G∗

C(q
2;W )|2
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∆ Dalitz decay: ΓγN(W ) and Γe+e−N(W )

Width function Γγ∗N (q;W ) with q =
√

q2

y± = (W ±M)2 − q2

F. Dohrmann et al, ERJA 45, 401 (2010)

Γγ∗N (q;W ) =
α

16

(W +M)2

M2W 3

√
y+y−y−|GT (q

2,W )|2

|GT (q
2;M∆)|2 = |G∗

M (q2;W )|2 + 3|G∗
E(q

2;W )|2 +
q2

2W 2
|G∗

C(q
2;W )|2

Then
ΓγN (W ) ≡ Γγ∗N (0;W )

Γe+e−N (W ) =
2α

3π

∫ W−M

2me

Γγ∗N (q;W )
dq

q

threshold: 2me (γ∗ → e+e−); upper limit q2 = (W −M)2

|G∗
M |2 model⇒ model for ΓγN and Γe+e−N
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In this work we start with the quark model described in
Ref. [20] for the N!ð1520Þ resonance and extend it to the
region q2 > 0. In addition to the contribution from the
bare core, we take also a meson cloud contribution. This
contribution is modeled within the lines of our previous
study of the Δð1232Þ in the timelike region, i.e., with the
pion-photon coupling parametrized by the pion form factor
data [7].
Three conclusions emerged in the context of our model:

(i) the γ!N → N!ð1520Þ timelike transition form factors are
dominated by the meson cloud contributions; (ii) in the
range q2 ¼ 0–1 GeV2, the constant form factor model
(also known as QED approximation) usually taken in
the literature underestimates the electromagnetic coupling
of the N!ð1520Þ with consequences for the differential
Dalitz decay width; (iii) in addition to the Δð1232Þ
resonance, the N!ð1520Þ has a role in dilepton decay
reactions at intermediate energies.
This article is organized as follows. In Sec. II we describe

the methodology used to extend a valence quark model
fixed in the spacelike region to the timelike region. Next,
in Sec. III, we discuss the relation between the γ!N →
N!ð1520Þ form factors and the formulas for the photon
and Dalitz decay widths of the N!ð1520Þ. The formalism of
the covariant spectator quark model used here is presented
briefly in Sec. IV. In Sec. V we discuss the formulas used to
calculate the γ!N → N!ð1520Þ form factors. The results for
the form factors in the timelike region and the N!ð1520Þ
decay widths are presented in Sec. VI. Outlook and
conclusions are presented in Sec. VII.

II. METHODOLOGY

In the covariant spectator quark model, the application
of impulse approximation to the interaction of a photon
with a baryon, seen as a three quark qqq state, justifies that
one integrates out the relative internal momentum in the
spectator diquark subsystem [21,25,26]. After this internal
momentum integration, in the process of the covariant
integration over the global momentum of the interacting
diquark, one may keep only the main contribution, which is
originated by the on-mass-shell pole of the diquark—while
the remaining quark that interacts with the photon is taken
to be off mass shell [25]. This last integration on the on-
shell diquark internal momenta amounts to having the qqq
system as a quark-diquark system, and to treating the
diquark with an effective average mass mD [21,25,26]. It is
also an ingredient of the model that the electromagnetic
quark current is represented by a parametrization of vector
meson dominance [21,26,34,35]. In addition to the con-
tributions from the core of valence quarks, the covariant
spectator quark model can include also a covariant para-
metrization of the meson cloud effects that are important in
the low momentum transfer region and that depend on the
baryons participating in the reaction [6,7,22,23,31,36–38].

Here, the extension of the model to the timelike regime
requires two important modifications:

(i) The nucleon and the N!ð1520Þ quark core wave
functions have to be calculated in timelike kinematic
conditions, depending on an arbitrary massW which
can differ from the resonance mass, labeled MR.

(ii) The electromagnetic quark current has also to be
extended to the timelike regime. That is done by
introducing finite mass widths for the ρ and ω
mesons.

For the γ!N → Δð1232Þ transition in the timelike region,
we have already found that themeson cloud contributions are
important, in comparison to the valence quark contributions
[7]. It isworthwhile now to testwhether the same phenomena
occurs for the N!ð1520Þ resonance, which carries, in
particular, a different isospin. In our model the valence
quark contributions for themagnetic and electric form factors
vanish at the photon point (q2 ¼ 0) due to the orthogonality
of the initial and final state wave functions [20]. Other
valence quark models estimate them as nonzero contribu-
tions (a discussion can be found in Ref. [20]). Since, in our
model, the valence quark contributions for the electric
and magnetic transition form factors vanish at q2 ¼ 0,
their extension to the q2 > 0 region gives nonzero but
small contributions for those transition form factors.
Nevertheless, our model can provide a good approximation
for the N!ð1520Þ resonance in the timelike region based
on the meson cloud contributions, which dominate in the
timelike region. Moreover, the form factors show a depend-
ence on q2 with consequences for the analysis of reactions in
the timelike region, where the electromagnetic couplings are
often fixed at their value atq2 ¼ 0 (theQEDapproximation).

III. N!ð1520Þ DALITZ DECAY

The N!ð1520Þ resonance is a JP ¼ 3
2
− state, with isospin

I ¼ 1
2. The N

!ð1520Þ Dalitz decay into the nucleon can be
expressed in terms of the decay width [39]

Γγ!Nðq;WÞ¼ 3α
16

ðW−MÞ2

M2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
yþjGTðq2;WÞj2; ð3:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α is the fine-structure constant,

y& ¼ ðW &MÞ2 − q2; ð3:2Þ

and jGTðq2;WÞj2 is a combination of the electromagnetic
transition form factors given by

jGTðq2;WÞj2 ¼ 3jGMðq2;WÞj2 þ jGEðq2;WÞj2

þ q2

2W2
jGCðq2;WÞj2: ð3:3Þ

In the previous equation GM, GE, and GC are, respectively,
the magnetic dipole, electric, and Coulomb quadrupole
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the ρ-meson pole near q2 ≃ 0.3 GeV2, below q2 ¼ m2
ρ≃

0.6 GeV2 [5] as it should. The constant form factor model
is a good starting point very close to q2 ¼ 0 but, on the
other hand, does not satisfactorily take into account the
finite size of the baryons and their structure of nonpointlike
particles.
In the covariant spectator quark model the contributions

for the transition form factors can be separated into valence
quark and meson cloud effects (dominated by the pion).
The valence quark component is directly constrained by
lattice QCD data, and has been seen to coincide with the
valence quark core contributions obtained from an exten-
sive data analysis of pion photoproduction [8,23,24]. Its
comparison to experimental data enables the extraction of
information on the complementary meson cloud compo-
nent in the spacelike region [4,6]. However the extension to
the timelike region of the meson cloud is problematic given
the difficulty of a calculation that comprises also in a
consistent way the whole meson spectrum. In Ref. [4] the
meson cloud was parametrized by a function Fρ, taken
from the Iachello model where it describes the dressing
of the ρ-propagator by intermediate ππ states. As noted
before, unfortunately, the function Fρ has a peak that is
displaced relatively to the ρ-meson pole mass. Here, by
directly using the pion form factor data we corrected for
this deficiency.
Moreover, in previous works [4,6–9] we have assumed

that the pion cloud contributions for the magnetic dipole
form factor could be represented by a simple parametriza-
tion of one term only. But in the present work we introduce
an alternative parametrization of the pion cloud which
contains two terms. These two leading order contributions
for the pion cloud correspond to the two diagrams of Fig. 1.
We use then a parametrization of the pion cloud contribu-
tions for G"

M where diagram (a) is related to the pion
electromagnetic form factor Fπðq2Þ, and is separated from
diagram (b). Diagram (a), where the photon couples
directly to the pion, is dominant according to chiral
perturbation theory, which is valid in the limit of massless
and structureless quarks. But the other contribution, from
diagram (b), where the photon couples to intermediate
(octet or decuplet) baryon states while the pion is
exchanged between those states, becomes relevant in

models with constituent quarks with dressed masses and
nonzero anomalous magnetic moments. This was shown in
Ref. [10] on the study of the meson cloud contributions to
the magnetic dipole moments of the octet to decuplet
transitions. The results obtained for the Δ → γ"N transition
in particular, suggests that both diagrams contribute with
almost an equal weight.

II. IACHELLO MODEL

In the Iachello model the dominant contribution to the
Δ → γ"N magnetic dipole form factor is the meson cloud
component (99.7%) [5]. The meson cloud contributions
is estimated by VMD in terms of a function Fρ from
the dressed ρ propagator, which in the limit q2 ≫ 4m2

π ,
reads [4]

Fρðq2Þ ¼
m2

ρ

m2
ρ − q2 − 1

π
Γ0
ρ

mπ
q2 log q2

m2
π
þ i Γ0

ρ

mπ
q2

;

¼
m2

ρ

m2
ρ þQ2 þ 1

π
Γ0
ρ

mπ
Q2 log Q2

m2
π

: ð2:1Þ

In the previous equation Q2 ¼ −q2, mπ is the pion mass,
and Γ0

ρ is a parameter that can be fixed by the experimental
ρ decay width into 2π, Γ0

ρ¼ 0.149GeV or Γ0
ρ ¼ 0.112 GeV

depending on the specific model [4,22].

III. COVARIANT SPECTATOR QUARK MODEL

Within the covariant spectator quark model frame-
work the nucleon and the Δ are dominated by the S-wave
components of the quark-diquark configuration [6,25,26].
In this case the only nonvanishing form factor of the
Δ → γ"N transition is the magnetic dipole form factor,
which anyway dominates in all circumstances.
One can then write [6–8]

G"
Mðq2;WÞ ¼ GB

Mðq2;WÞ þGπ
Mðq2Þ; ð3:1Þ

whereGB
M is the contribution from the bare core andGπ

M the
contribution of the pion cloud. Here W generalizes the Δ
mass MΔ to an arbitrary invariant mass W in the inter-
mediate states [4]. We omitted the argumentW onGπ

M since
we take that function to be independent of W.
Following Refs. [4,6–8] we can write

GB
Mðq2;WÞ ¼ 8

3
ffiffiffi
3

p M
M þW

fvðq2ÞIðq2;WÞ; ð3:2Þ

where

Iðq2;WÞ ¼
Z

k
ψΔðPþ; kÞψNðP−; kÞ; ð3:3Þ

is the overlap integral of the nucleon and the Δ radial wave
functions which depend on the nucleon (P−), the Delta

FIG. 1. Pion cloud contributions for the Δ → γ"N electromag-
netic transition form factors. Between the initial and final state
there are several possible intermediate octet baryon and/or decuplet
baryon states: B1 in diagram (a); B2 and B3 in diagram (b).
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Figure 5: (Color online) ppe+e− final state for the

M e+e−
inv > 0.15 GeV/c2. Invariant mass of pe+e− and

missing mass of a proton within the HADES accep-
tance (data are corrected for the reconstruction efficiency
and plotted with the variable bin width). The gray
band indicates the uncertainty of model-dependent one-
dimensional efficiency and acceptance corrections (for de-
tails see text). Vertical error bars represent statistical
error, blue horizontal bars indicate normalization error.
Monte Carlo simulations (curves): blue curve represents
the sum of the ∆ Dalitz decay according to [27] and non-
resonant nucleon-nucleon part of bremsstrahlung accord-
ing to [38] (solid green line histogram). Color codes of

the other curves are as in Fig. 4.

we have used the Shyam and Mosel model, which de-
scribes better data in pp and pn collisions at 1.25 GeV
[40]. It predicts the relative contribution of the nucleon-
nucleon bremsstrahlung to ∆ production on a level of
9%. It is presented as a green line histogram in Fig. 4
(right panel) and also in Fig. 5. The contribution of the
N(1440) Dalitz decay can be neglected [20].

The solid cyan curve in Fig. 4 (right panel) repre-
sents the simplest case: the ∆ contribution with a point-
like γ∗N∆ form factor [22] and the nucleon-nucleon
bremsstrahlung [38]. The "QED model" can be con-
sidered as a lower level estimate of the ∆ contribution.
The blue solid curve is the sum of the full Ramalho-
Peña model contribution [27] and, as above, the nucleon-
nucleon bremsstrahlung. The ∆ decay in this model is
calculated with a mass dependent eTFF with separate
contributions from the quark core and the pion cloud.
The presence of the form factor enhances the e+e− yield
at large invariant masses. The model describes the data
just above the π0 mass quite well but at higher e+e−

masses the data points present still an excess above the
model. A possible explanation on the origin of the e+e−

excess might be drawn from the comparison of the com-
ponents in the Ramalho-Peña model. As already men-
tioned above, the form factor model is composed of two
ingredients. In order to do a qualitative comparison
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Figure 6: (Color online) ppe+e− final state. The ratio
of the experimental data (squares with error bars) to the
simulated contribution of the ∆ resonance with a point-
like form factor ("QED model") [22] as a function of the
invariant mass of e+e−. The experimental data are af-
ter subtraction of the simulated non-resonant nucleon-
nucleon part of bremsstrahlung according to [38]. Ver-
tical error bars represent statistical error only. Monte
Carlo simulations (histograms) are also divided by the
"QED model" contribution: dashed dark green line rep-
resents the Iachello-Wan model [16], blue line represents
the ∆ Dalitz decay according to Ramalho-Peña model
[27], and dotted red and black dashed lines display the
pion cloud and the bare quark core components of the
Ramalho-Peña model, respectively, after normalization
to the same yield as the full model. In addition, the ratio
of the bremsstrahlung to the "QED model" contribution
(green hatched area) is shown as a part subtracted from
the experimental data. Distributions are plotted with the

same variable bin width as in Fig. 4, right panel.

of the shape of the distribution, both components were
scaled up to the same total yield in the full solid an-
gle. The first component, the bare quark core (supple-
mented by bremsstrahlung), is plotted in Fig. 4 (right
panel) by a black dashed curve. Its distribution is simi-
lar to the "QED model" (cyan curve). This is expected,
since this part of the form factor stays constant for the
four-momentum transfer squared probed in our experi-
ment. The second component, related to the pion cloud
(also supplemented by bremsstrahlung), is plotted as the
dotted red curve. The distribution practically describes
the data points within their error bars what might in-
dicate that this model component has a correct q2 de-
pendence and is slightly underestimated in the model.
The largest contribution is provided by the Iachello-Wan
model [16], supplemented by the bremsstrahlung yield
(dashed dark green curve). It tends to overshoot the
experimental contribution at the intermediate mass 0.14
< Minv(e+e−) < 0.28 GeV/c2 while giving the good de-
scription at the high mass Minv(e+e−) > 0.28 GeV/c2.
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Fig. 10 At the right: Calculation of |G∗

M
| in timelike region in terms of W [30]. At the

left: ∆(1232) Dalitz decay cross-sections from HADES [77]. See discussion in the main text.

case the functions are represented in terms of q2 = −Q2, in order to facilitate
the discussion in the timelike regime. The new parametrization improves the
previous one, because it clearly separates the contributions from the photon
coupling with the pion from the photon coupling with intermediate baryon
states (see Fig. 9).

The motivation to the use of the parametrization (16) is based on the
diagrammatic representation of Fig. 9, and in the results of the study of the
octet to decuplet transition from Ref. [32]. In that work a microscopic meson
cloud contribution based on the cloudy bag model [73] was used in combination
with the covariant spectator quark model for the quark core. It was found that
in the case of the γ∗N → ∆(1232) transition each diagram contribute with
about 50% to the pion cloud effect.

In the new representation only a part (50%) of the contribution is then
linked with the photon coupling with the pion, as expected in a realistic de-
scription. The second term, which describes the coupling with intermediate
baryons is now represented phenomenologically, using an effective generaliza-
tion of G2

D to the timelike region, where the pole q2 = Λ2
D is regularized [29,

30].

The present representation of Gπ
M is particularly useful for studies in

the timelike region, in particular to the study of the ∆(1232) Dalitz decay:
∆→ γ∗N → e+e−N , where the final state has a dilepton pair [30,74]. Those
processes have been studied at HADES [74,75,76,77]. This topic was discussed
also in the presentation of B. Ramstein [78].

In timelike region one can calculate the G∗
M form factor, which is complex,

in terms of the running mass W that can differ from the mass of the pole M∆.
The results of |G∗

M | for different values of W are presented in the left panel of
Fig. 10. For kinematic reason the functions are limited by q2 ≤ (W −M)2 [29,
30]. The model for |G∗

M | was used to estimate the∆(1232) Dalitz cross-sections
and it was compared with the results from HADES [77]. The results are pre-
sented in the right panel of Fig. 10. The covariant spectator quark model

(1232) Dalitz decay  
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the ρ-meson pole near q2 ≃ 0.3 GeV2, below q2 ¼ m2
ρ≃

0.6 GeV2 [5] as it should. The constant form factor model
is a good starting point very close to q2 ¼ 0 but, on the
other hand, does not satisfactorily take into account the
finite size of the baryons and their structure of nonpointlike
particles.
In the covariant spectator quark model the contributions

for the transition form factors can be separated into valence
quark and meson cloud effects (dominated by the pion).
The valence quark component is directly constrained by
lattice QCD data, and has been seen to coincide with the
valence quark core contributions obtained from an exten-
sive data analysis of pion photoproduction [8,23,24]. Its
comparison to experimental data enables the extraction of
information on the complementary meson cloud compo-
nent in the spacelike region [4,6]. However the extension to
the timelike region of the meson cloud is problematic given
the difficulty of a calculation that comprises also in a
consistent way the whole meson spectrum. In Ref. [4] the
meson cloud was parametrized by a function Fρ, taken
from the Iachello model where it describes the dressing
of the ρ-propagator by intermediate ππ states. As noted
before, unfortunately, the function Fρ has a peak that is
displaced relatively to the ρ-meson pole mass. Here, by
directly using the pion form factor data we corrected for
this deficiency.
Moreover, in previous works [4,6–9] we have assumed

that the pion cloud contributions for the magnetic dipole
form factor could be represented by a simple parametriza-
tion of one term only. But in the present work we introduce
an alternative parametrization of the pion cloud which
contains two terms. These two leading order contributions
for the pion cloud correspond to the two diagrams of Fig. 1.
We use then a parametrization of the pion cloud contribu-
tions for G"

M where diagram (a) is related to the pion
electromagnetic form factor Fπðq2Þ, and is separated from
diagram (b). Diagram (a), where the photon couples
directly to the pion, is dominant according to chiral
perturbation theory, which is valid in the limit of massless
and structureless quarks. But the other contribution, from
diagram (b), where the photon couples to intermediate
(octet or decuplet) baryon states while the pion is
exchanged between those states, becomes relevant in

models with constituent quarks with dressed masses and
nonzero anomalous magnetic moments. This was shown in
Ref. [10] on the study of the meson cloud contributions to
the magnetic dipole moments of the octet to decuplet
transitions. The results obtained for the Δ → γ"N transition
in particular, suggests that both diagrams contribute with
almost an equal weight.

II. IACHELLO MODEL

In the Iachello model the dominant contribution to the
Δ → γ"N magnetic dipole form factor is the meson cloud
component (99.7%) [5]. The meson cloud contributions
is estimated by VMD in terms of a function Fρ from
the dressed ρ propagator, which in the limit q2 ≫ 4m2

π ,
reads [4]

Fρðq2Þ ¼
m2

ρ

m2
ρ − q2 − 1

π
Γ0
ρ

mπ
q2 log q2

m2
π
þ i Γ0

ρ

mπ
q2

;

¼
m2

ρ

m2
ρ þQ2 þ 1

π
Γ0
ρ

mπ
Q2 log Q2

m2
π

: ð2:1Þ

In the previous equation Q2 ¼ −q2, mπ is the pion mass,
and Γ0

ρ is a parameter that can be fixed by the experimental
ρ decay width into 2π, Γ0

ρ¼ 0.149GeV or Γ0
ρ ¼ 0.112 GeV

depending on the specific model [4,22].

III. COVARIANT SPECTATOR QUARK MODEL

Within the covariant spectator quark model frame-
work the nucleon and the Δ are dominated by the S-wave
components of the quark-diquark configuration [6,25,26].
In this case the only nonvanishing form factor of the
Δ → γ"N transition is the magnetic dipole form factor,
which anyway dominates in all circumstances.
One can then write [6–8]

G"
Mðq2;WÞ ¼ GB

Mðq2;WÞ þGπ
Mðq2Þ; ð3:1Þ

whereGB
M is the contribution from the bare core andGπ

M the
contribution of the pion cloud. Here W generalizes the Δ
mass MΔ to an arbitrary invariant mass W in the inter-
mediate states [4]. We omitted the argumentW onGπ

M since
we take that function to be independent of W.
Following Refs. [4,6–8] we can write

GB
Mðq2;WÞ ¼ 8

3
ffiffiffi
3

p M
M þW

fvðq2ÞIðq2;WÞ; ð3:2Þ

where

Iðq2;WÞ ¼
Z

k
ψΔðPþ; kÞψNðP−; kÞ; ð3:3Þ

is the overlap integral of the nucleon and the Δ radial wave
functions which depend on the nucleon (P−), the Delta

FIG. 1. Pion cloud contributions for the Δ → γ"N electromag-
netic transition form factors. Between the initial and final state
there are several possible intermediate octet baryon and/or decuplet
baryon states: B1 in diagram (a); B2 and B3 in diagram (b).
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left: ∆(1232) Dalitz decay cross-sections from HADES [77]. See discussion in the main text.

case the functions are represented in terms of q2 = −Q2, in order to facilitate
the discussion in the timelike regime. The new parametrization improves the
previous one, because it clearly separates the contributions from the photon
coupling with the pion from the photon coupling with intermediate baryon
states (see Fig. 9).

The motivation to the use of the parametrization (16) is based on the
diagrammatic representation of Fig. 9, and in the results of the study of the
octet to decuplet transition from Ref. [32]. In that work a microscopic meson
cloud contribution based on the cloudy bag model [73] was used in combination
with the covariant spectator quark model for the quark core. It was found that
in the case of the γ∗N → ∆(1232) transition each diagram contribute with
about 50% to the pion cloud effect.

In the new representation only a part (50%) of the contribution is then
linked with the photon coupling with the pion, as expected in a realistic de-
scription. The second term, which describes the coupling with intermediate
baryons is now represented phenomenologically, using an effective generaliza-
tion of G2

D to the timelike region, where the pole q2 = Λ2
D is regularized [29,

30].

The present representation of Gπ
M is particularly useful for studies in

the timelike region, in particular to the study of the ∆(1232) Dalitz decay:
∆→ γ∗N → e+e−N , where the final state has a dilepton pair [30,74]. Those
processes have been studied at HADES [74,75,76,77]. This topic was discussed
also in the presentation of B. Ramstein [78].

In timelike region one can calculate the G∗
M form factor, which is complex,

in terms of the running mass W that can differ from the mass of the pole M∆.
The results of |G∗

M | for different values of W are presented in the left panel of
Fig. 10. For kinematic reason the functions are limited by q2 ≤ (W −M)2 [29,
30]. The model for |G∗

M | was used to estimate the∆(1232) Dalitz cross-sections
and it was compared with the results from HADES [77]. The results are pre-
sented in the right panel of Fig. 10. The covariant spectator quark model

(1232) Dalitz decay  
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Figure 7: (Color online) ppe+e− final state for M e+e−
inv > 0.15 GeV/c2. Experimental data (see symbols with error

bars) are corrected for the acceptance and reconstruction inefficiencies. Both distributions are after subtraction of the
simulated bremsstrahlung contribution. Left: angular distribution of pe+e− (or missing p) in the c.m.s. (black dots),
green shaded area at the bottom represents bremsstrahlung (see text for details). Right: e+ and e− angle along the
γ∗ direction (upper index) in the γ∗ rest frame (lower index). Red dashed curve is a fit ∼ 1 + B cos2 θ, where B =
1.17 ± 0.34. The gray band indicates the uncertainty introduced by the model dependent correction in both cases.
Vertical error bars represent statistical error, blue horizontal bars indicate the normalization error. The blue curve in
both cases denotes simulation results assuming ∆ Dalitz decay according to model of [27]. The black dashed curve
(left) represents the ∆ production from hadronic channel in the PWA description [51], renormalized to the same yield

as the data points in the angular range -0.8 < cos θCM (pe+e−) < +0.8.

• The branching ratio at the pole position is calcu-
lated by scaling the known BR of the models by the
ratio of the integrated experimental and the model
yields:

BRexp(∆ → pe+e−) = 4.2× 10−5 Nexp

Nmodel
. (3)

The obtained ∆ Dalitz branching ratio at the pole po-
sition is equal to 4.19 × 10−5 when extrapolated with
the help of the Ramalho-Peña model [27], which is taken
as the reference, since it describes the data better. The
branching ratio deduced with the QED model differs by
6%. The estimate of the branching ratio also depends on
the cross section for the ∆ production drawn from the
PWA solution wihich is affected by the error of 7.4%
(σ∆ = 4.45 ± 0.33). Both contributions are included
in the systematic error due to model uncertainty which
amounts in total to 10%. Note that we excluded from the
systematic error of the PWA solution the error due to the
normalisation of the data, since the same error affects the
dielectron yield. Systematic errors related to the data re-
construction are similar as presented in Sec. III A. Con-
tributions to the systematic error, studied carefully by
means of a Monte Carlo simulations, are due to the abso-
lute time reconstruction, particle identification, rejection
of γ conversion, CB subtraction, missing mass window
cut, efficiency and acceptance correction uncertainty. All
errors, added quadratically, result in a total systematic
error of 11%. The statistical error amounts to 8%. Fi-
nally, we arrive at the branching ratio BR(∆ → pe+e−)
= (4.19 ± 0.42 model ± 0.46 syst. ± 0.34 stat.) × 10−5.

VI. SUMMARY AND OUTLOOK

The pp → ppe+e−γ and pp → ppe+e− reactions have
been studied in experiments using a proton beam with
an incident energy of 1.25 GeV. The ppe+e−γ channel ac-
cessible by HADES allows to study the π0 Dalitz decay
and to control in an independent way the ∆ contribu-
tion. All distributions are in a perfect agreement with
expectations from simulations. In particular, the angle
between e+ or e− and γ∗ in the γ∗ rest frame follows the
1+ cos2 θ distribution predicted for the decay of pseudo-
scalar mesons. Moreover, the yield is consistent with the
measurements in the pp → ppπ0 channel, where the π0

was identified by the missing mass technique [51].
These results are used for the analysis of the pp →

ppe+e− channel which allows to extract, for the first time,
the branching ratio of the ∆ Dalitz decay (4.19 ± 0.62
syst. incl. model ± 0.34 stat.) × 10−5. The value is
found to be in agreement with estimates based on calcu-
lations, using either constant electromagnetic form fac-
tors [7, 22] or a quark constituent model [27].

Our work constitutes the first detailed study of a time-
like electromagnetic baryon transition using the Dalitz
decay process. It paves the way to the study of higher
resonances, where larger four-momentum transfer can
be reached and, therefore, a larger sensitivity to elec-
tromagnetic form factors could be observed. This can
be achieved with HADES and the pion beam at GSI
[47]. Such studies constitute an indispensable comple-
ment to measurements of space-like transitions using me-
son electro-production experiments. The global descrip-
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In this work we start with the quark model described in
Ref. [20] for the N!ð1520Þ resonance and extend it to the
region q2 > 0. In addition to the contribution from the
bare core, we take also a meson cloud contribution. This
contribution is modeled within the lines of our previous
study of the Δð1232Þ in the timelike region, i.e., with the
pion-photon coupling parametrized by the pion form factor
data [7].
Three conclusions emerged in the context of our model:

(i) the γ!N → N!ð1520Þ timelike transition form factors are
dominated by the meson cloud contributions; (ii) in the
range q2 ¼ 0–1 GeV2, the constant form factor model
(also known as QED approximation) usually taken in
the literature underestimates the electromagnetic coupling
of the N!ð1520Þ with consequences for the differential
Dalitz decay width; (iii) in addition to the Δð1232Þ
resonance, the N!ð1520Þ has a role in dilepton decay
reactions at intermediate energies.
This article is organized as follows. In Sec. II we describe

the methodology used to extend a valence quark model
fixed in the spacelike region to the timelike region. Next,
in Sec. III, we discuss the relation between the γ!N →
N!ð1520Þ form factors and the formulas for the photon
and Dalitz decay widths of the N!ð1520Þ. The formalism of
the covariant spectator quark model used here is presented
briefly in Sec. IV. In Sec. V we discuss the formulas used to
calculate the γ!N → N!ð1520Þ form factors. The results for
the form factors in the timelike region and the N!ð1520Þ
decay widths are presented in Sec. VI. Outlook and
conclusions are presented in Sec. VII.

II. METHODOLOGY

In the covariant spectator quark model, the application
of impulse approximation to the interaction of a photon
with a baryon, seen as a three quark qqq state, justifies that
one integrates out the relative internal momentum in the
spectator diquark subsystem [21,25,26]. After this internal
momentum integration, in the process of the covariant
integration over the global momentum of the interacting
diquark, one may keep only the main contribution, which is
originated by the on-mass-shell pole of the diquark—while
the remaining quark that interacts with the photon is taken
to be off mass shell [25]. This last integration on the on-
shell diquark internal momenta amounts to having the qqq
system as a quark-diquark system, and to treating the
diquark with an effective average mass mD [21,25,26]. It is
also an ingredient of the model that the electromagnetic
quark current is represented by a parametrization of vector
meson dominance [21,26,34,35]. In addition to the con-
tributions from the core of valence quarks, the covariant
spectator quark model can include also a covariant para-
metrization of the meson cloud effects that are important in
the low momentum transfer region and that depend on the
baryons participating in the reaction [6,7,22,23,31,36–38].

Here, the extension of the model to the timelike regime
requires two important modifications:

(i) The nucleon and the N!ð1520Þ quark core wave
functions have to be calculated in timelike kinematic
conditions, depending on an arbitrary massW which
can differ from the resonance mass, labeled MR.

(ii) The electromagnetic quark current has also to be
extended to the timelike regime. That is done by
introducing finite mass widths for the ρ and ω
mesons.

For the γ!N → Δð1232Þ transition in the timelike region,
we have already found that themeson cloud contributions are
important, in comparison to the valence quark contributions
[7]. It isworthwhile now to testwhether the same phenomena
occurs for the N!ð1520Þ resonance, which carries, in
particular, a different isospin. In our model the valence
quark contributions for themagnetic and electric form factors
vanish at the photon point (q2 ¼ 0) due to the orthogonality
of the initial and final state wave functions [20]. Other
valence quark models estimate them as nonzero contribu-
tions (a discussion can be found in Ref. [20]). Since, in our
model, the valence quark contributions for the electric
and magnetic transition form factors vanish at q2 ¼ 0,
their extension to the q2 > 0 region gives nonzero but
small contributions for those transition form factors.
Nevertheless, our model can provide a good approximation
for the N!ð1520Þ resonance in the timelike region based
on the meson cloud contributions, which dominate in the
timelike region. Moreover, the form factors show a depend-
ence on q2 with consequences for the analysis of reactions in
the timelike region, where the electromagnetic couplings are
often fixed at their value atq2 ¼ 0 (theQEDapproximation).

III. N!ð1520Þ DALITZ DECAY

The N!ð1520Þ resonance is a JP ¼ 3
2
− state, with isospin

I ¼ 1
2. The N

!ð1520Þ Dalitz decay into the nucleon can be
expressed in terms of the decay width [39]

Γγ!Nðq;WÞ¼ 3α
16

ðW−MÞ2

M2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
yþjGTðq2;WÞj2; ð3:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α is the fine-structure constant,

y& ¼ ðW &MÞ2 − q2; ð3:2Þ

and jGTðq2;WÞj2 is a combination of the electromagnetic
transition form factors given by

jGTðq2;WÞj2 ¼ 3jGMðq2;WÞj2 þ jGEðq2;WÞj2

þ q2

2W2
jGCðq2;WÞj2: ð3:3Þ

In the previous equation GM, GE, and GC are, respectively,
the magnetic dipole, electric, and Coulomb quadrupole
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bare core, we take also a meson cloud contribution. This
contribution is modeled within the lines of our previous
study of the Δð1232Þ in the timelike region, i.e., with the
pion-photon coupling parametrized by the pion form factor
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Three conclusions emerged in the context of our model:

(i) the γ!N → N!ð1520Þ timelike transition form factors are
dominated by the meson cloud contributions; (ii) in the
range q2 ¼ 0–1 GeV2, the constant form factor model
(also known as QED approximation) usually taken in
the literature underestimates the electromagnetic coupling
of the N!ð1520Þ with consequences for the differential
Dalitz decay width; (iii) in addition to the Δð1232Þ
resonance, the N!ð1520Þ has a role in dilepton decay
reactions at intermediate energies.
This article is organized as follows. In Sec. II we describe

the methodology used to extend a valence quark model
fixed in the spacelike region to the timelike region. Next,
in Sec. III, we discuss the relation between the γ!N →
N!ð1520Þ form factors and the formulas for the photon
and Dalitz decay widths of the N!ð1520Þ. The formalism of
the covariant spectator quark model used here is presented
briefly in Sec. IV. In Sec. V we discuss the formulas used to
calculate the γ!N → N!ð1520Þ form factors. The results for
the form factors in the timelike region and the N!ð1520Þ
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In the covariant spectator quark model, the application
of impulse approximation to the interaction of a photon
with a baryon, seen as a three quark qqq state, justifies that
one integrates out the relative internal momentum in the
spectator diquark subsystem [21,25,26]. After this internal
momentum integration, in the process of the covariant
integration over the global momentum of the interacting
diquark, one may keep only the main contribution, which is
originated by the on-mass-shell pole of the diquark—while
the remaining quark that interacts with the photon is taken
to be off mass shell [25]. This last integration on the on-
shell diquark internal momenta amounts to having the qqq
system as a quark-diquark system, and to treating the
diquark with an effective average mass mD [21,25,26]. It is
also an ingredient of the model that the electromagnetic
quark current is represented by a parametrization of vector
meson dominance [21,26,34,35]. In addition to the con-
tributions from the core of valence quarks, the covariant
spectator quark model can include also a covariant para-
metrization of the meson cloud effects that are important in
the low momentum transfer region and that depend on the
baryons participating in the reaction [6,7,22,23,31,36–38].

Here, the extension of the model to the timelike regime
requires two important modifications:

(i) The nucleon and the N!ð1520Þ quark core wave
functions have to be calculated in timelike kinematic
conditions, depending on an arbitrary massW which
can differ from the resonance mass, labeled MR.

(ii) The electromagnetic quark current has also to be
extended to the timelike regime. That is done by
introducing finite mass widths for the ρ and ω
mesons.

For the γ!N → Δð1232Þ transition in the timelike region,
we have already found that themeson cloud contributions are
important, in comparison to the valence quark contributions
[7]. It isworthwhile now to testwhether the same phenomena
occurs for the N!ð1520Þ resonance, which carries, in
particular, a different isospin. In our model the valence
quark contributions for themagnetic and electric form factors
vanish at the photon point (q2 ¼ 0) due to the orthogonality
of the initial and final state wave functions [20]. Other
valence quark models estimate them as nonzero contribu-
tions (a discussion can be found in Ref. [20]). Since, in our
model, the valence quark contributions for the electric
and magnetic transition form factors vanish at q2 ¼ 0,
their extension to the q2 > 0 region gives nonzero but
small contributions for those transition form factors.
Nevertheless, our model can provide a good approximation
for the N!ð1520Þ resonance in the timelike region based
on the meson cloud contributions, which dominate in the
timelike region. Moreover, the form factors show a depend-
ence on q2 with consequences for the analysis of reactions in
the timelike region, where the electromagnetic couplings are
often fixed at their value atq2 ¼ 0 (theQEDapproximation).

III. N!ð1520Þ DALITZ DECAY

The N!ð1520Þ resonance is a JP ¼ 3
2
− state, with isospin

I ¼ 1
2. The N

!ð1520Þ Dalitz decay into the nucleon can be
expressed in terms of the decay width [39]

Γγ!Nðq;WÞ¼ 3α
16

ðW−MÞ2

M2W3

ffiffiffiffiffiffiffiffiffiffiffi
yþy−
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yþjGTðq2;WÞj2; ð3:1Þ

where q ¼
ffiffiffiffiffi
q2

p
, α is the fine-structure constant,

y& ¼ ðW &MÞ2 − q2; ð3:2Þ

and jGTðq2;WÞj2 is a combination of the electromagnetic
transition form factors given by

jGTðq2;WÞj2 ¼ 3jGMðq2;WÞj2 þ jGEðq2;WÞj2
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2W2
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In the previous equation GM, GE, and GC are, respectively,
the magnetic dipole, electric, and Coulomb quadrupole
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form factors, which are complex functions in the region
q2 > 0.
The dilepton decay rate is obtained from the relation

(3.1). Using the compact notation Γ≡ Γeþe−N , one can
calculate the dilepton decay rate [39,40] as

Γ0
eþe−Nðq;WÞ≡ dΓ

dq
ðq;WÞ

¼ 2α
3πq3

ð2μ2 þ q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
4μ2

q2

s

Γγ%Nðq;WÞ;

ð3:4Þ

where μ is the electron mass.
TheDalitz decaywidth is thendeterminedby the integral of

Γ0
eþe−Nðq;WÞ in the kinematic region 4μ2 ≤ q2 ≤ ðW−MÞ2:

Γeþe−NðWÞ ¼
Z

W−M

2μ
Γ0
eþe−Nðq;WÞdq: ð3:5Þ

IV. COVARIANT SPECTATOR QUARK MODEL

In the covariant spectator quark model, the baryon wave
functions are specified by the flavor, spin, orbital angular
momentum, and radial excitations of the quark-diquark
states that are consistent with the baryon quantum number
[8,21,26,36]. The nucleon wave function ΨN was obtained
in Ref. [21] and the wave function ΨR of the resonance
N%ð1520Þ in Ref. [20]. Those wave functions describe only
the valence quark content of those baryons.
The constituent quark electromagnetic current is written

as the sum of a Dirac and a Pauli component,

jμqðqÞ ¼
"
1

6
f1þ þ 1

2
f1−τ3

#
γμ

þ
"
1

6
f2þ þ 1

2
f2−τ3

#
iσμνqν
2M

; ð4:1Þ

where τ3 is the Pauli matrix that acts on the (initial and
final) baryon isospin states, M is the nucleon mass, and
fi&ðq2Þ are the quark isoscalar/isovector form factors.
Those form factors will be parametrized with a form
consistent with the vector meson dominance (VMD)
mechanism.
For inelastic reactions, we replace γμ → γμ − qqμ

q2 in order
to ensure the conservation of the transition current. This is
equivalent to the Landau prescription [41–43]. The extra
term restores current conservation but does not affect the
results of the observables [41].
Once we know the wave functions for the nucleon

ΨNðP−; kÞ and the resonance ΨRðPþ; kÞ, with momenta
P− and Pþ, respectively, and the diquark momentum k, we
can calculate the transition current in a relativistic impulse
approximation [21,25,26]

Jμ ¼ 3
X

Γ

Z

k
Ψ̄RðPþ; kÞj

μ
qΨNðP−; kÞ; ð4:2Þ

where Γ represents the intermediate diquark polarizations,
and the integration symbol represents the covariant inte-
gration over the diquark on-shell momentum. The factor 3
takes into account the contributions of all of the quark pairs.
The polarization indices are suppressed in the wave
functions just for simplicity. The current associated with
the meson cloud will be parametrized separately and more
phenomenologically, as discussed later. The two compo-
nents of the current are conserved individually.
The definition (4.2) for the electromagnetic current is

valid for the spacelike and timelike regions. In the rest
frame of the resonance (mass W), we may write

P− ¼ ðEN;−qÞ; Pþ ¼ ðW; 0Þ; ð4:3Þ

where q is the photon three-momentum. In that case, the
magnitude of the three-vector q corresponding to a photon
of the four-momentum q and the squared momentum q2 is
given by

jqj2 ¼ yþy−
4W2

; ð4:4Þ

where y& is defined in Eq. (3.2). In the case of a
timelike photon (q2 > 0), the last condition implies that
physical photons (with jqj2 ≥ 0) are defined only for
0 ≤ q2 ≤ ðW −MÞ2, or q2 ≥ ðW þMÞ2. As we are inter-
ested in resonance decay, the region near q2 ¼ 0 is the one
upon which we will focus, and we will skip the discussion
of the last case. In conclusion, because both the nucleon
and the resonance are taken on their mass shell, the
transition form factors for a transition between a nucleon
of mass M and a resonance of mass W are kinematically
restricted to the region q2 ≤ ðW −MÞ2 in the timelike
region. As the resonance massW grows larger, the spanned
momentum region increases.

A. Quark form factors

The valence quark form factors, included in the effective
electromagnetic quark current (4.1) have a parametrization
inspired in the VMD mechanism that reads [21,34,35]

f1&ðq2Þ ¼ λq þ ð1 − λqÞ
m2

v&
m2

v& − q2
− c&

M2
hq

2

ðM2
h − q2Þ2

;

f2&ðq2Þ ¼ κ&

$
d&

m2
v&

m2
v& − q2

þ ð1 − d&Þ
M2

h

M2
h − q2

%
: ð4:5Þ

Here, mv& represents light vector meson masses, Mh is an
effective heavy vector meson, κ& indicates the quark
anomalous magnetic moment, c&; d& are mixture coeffi-
cients, and λq is a high-energy parameter related to the
quark density number in the deep inelastic limit [21]. For
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IV. TIMELIKE REGIME

The partial width ΓγN associated with the N∗ → γN
decay can be expressed as [4, 56]

ΓγN =
2

(2J + 1)π
K2MN

MR

[

|A1/2|2 + |A3/2|2
]

, (4.1)

where J is the spin of the resonance (J = 1
2 ,

3
2 ), and

|A1/2|, |A3/2| represent the transverse helicity amplitudes
(at resonance rest frame) for Q2 = 0. In the case J = 1

2
we set A3/2 = 0.

In the following we refer the mass of the resonance
generically as W (not necessarily MR).

A. N(1535) → γ∗N transition

To study the N(1520) Dalitz decay (N(1535) →
e+e−N), we start by defining the function

Γγ∗N (q,W ) =
α

M2
R

√
y+y−y+|GT (q

2,W )|2,

(4.2)

where q =
√

q2, and

y± = (W ±MN )2 − q2. (4.3)

The function GT (q,W ) is defined by

|GT (q
2,W )|2 = |GE(q

2,W )|2 +
q2

2W 2
|GC(q

2,W )|2.

(4.4)

The electric (GE) and Coulomb (GC) take the form

GE = F ∗
1 + ηF ∗

2 ,

GC = −
W

2

(W +NN )

Q2
[ηF ∗

1 − τF ∗
2 ] , (4.5)

where η = MR−MN

MR+MN
, as before.

The form factors GE and GC are dimesionless and are
proportional to the form factors used in Refs. [1, 2]. The
conversion to alternative representations are presented in
Appendix B. For the connection with the physical case
(W = MR) we note that GE and GC are related with
the amplitudes (3.1)-(3.2) by

GE =
1

B
A1/2, GE =

1√
2B

MR

|q|
S1/2. (4.6)

The electromagnetic decay with can be calculate from
Eq. (4.2) in the form

ΓγN =
α

M2
R

(MR +MN )2K|GE(0,MR)|2. (4.7)

This result is consistent with (4.1) in the case J = 1/2.

B. N(1520) → γ∗N transition

To study the N(1520) Dalitz decay (N(1520) →
e+e−N), we start by defining the function1 [1]

Γγ∗N (q,W ) =
3α

32

(W −M)2

M2W 3

√
y+y−y+|GT (q

2,W )|2,

(4.8)

where q =
√

q2, and GT (q,W ) is the follwing combina-
tion of the electromagnetic transition form factors [24]:

|GT (q
2,W )|2 = 3|GM (q2,W )|2 + |GE(q

2,W )|2

+
q2

2W 2
|GC(q

2,W )|2. (4.9)

The form factors GM , GE and GC are in the Devenish
representation [1, 2].

The relation (4.8), can also be used to estimate the
physical decay width, in the limits q2 = 0 and W = MR.
In a first step, we can write

ΓγN =
3α

16

(MR −MN )2

M2
NM3

R

(MR +MN )2K|GT (0,MR)|2.

Using the relation between helcity amplitudes, we recover
the result (4.1).

V. RESULTS

.....

1 We correct the result from Ref. [24] with a factor 1/2 (error).



on jGT j2 is important when we look for the function
Γeþe−Nðq;WÞ, or for Γeþe−NðWÞ at a large W.
In Fig. 10 we present the results of Γeþe−NðWÞ in

comparison to the electromagnetic decay width ΓγNðWÞ.

In the same figure, we also compare our results for
Γeþe−NðWÞ, ΓγNðWÞ from the N$ð1520Þ resonance to the
corresponding ones from the Δð1232Þ decays [7]. In both
cases, one includes the combination of the valence quark
and meson cloud contributions.
The results from Fig. 10 imply that the two resonances

are almost equally relevant for a large W, suggesting that
the N$ð1520Þ may play an important role in dilepton decay
reactions.

VII. OUTLOOK AND CONCLUSIONS

We apply to the N$ð1520Þ → γN transition a model
which adds a covariant valence quark core contribution
with a meson cloud term. The meson cloud term is related
to the pion electromagnetic form factor, which is well
established in the timelike region, and the transition form
factors are first fixed in the spacelike region. The form
factor behavior in the timelike region is then predicted, as is
the N$ð1520Þ → γN decay width and the N$ð1520Þ Dalitz
decay, N$ð1520Þ → eþe−N. The timelike N$ð1520Þ tran-
sition form factors are dominated by the meson cloud
contributions.
In the range q2 ¼ 0–1 GeV2, the constant form factor

model, or QED approximation, that is usually taken in
the literature underestimates the electromagnetic coupling
of the N$ð1520Þ up to 2 orders of magnitude. This has a
large effect on q2 dependent observables as the N$ð1520Þ
Dalitz decay. The q2 dependence effect may be diluted in
Γeþe−NðWÞ, which is obtained by integrating over q2, but it
can be clearly observed if we look at the differential Dalitz
decay width dΓ

dq ðq;WÞ.
In line with the HADES results [3,13,14], the N$ð1520Þ

and Δð1232Þ decays compete, and at large energies the
former is certainly important.
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APPENDIX: REGULARIZATION OF
HIGH MOMENTUM POLES

As discussed in the main text, for a givenW, the squared
momentum q2 is limited by the condition q2 ≤ ðW −MÞ2.
Then, if one has a singularity for q2 ¼ Λ2, that singularity
will appear for values of W, such that Λ2 ≤ ðW −MÞ2,
or W ≥ M þ Λ.
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FIG. 9. N$ð1520Þ Dalitz decay width as a function of W. The
result of our model (the solid line) is compared to the result of the
constant form factor model (the dotted-dashed line).
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FIG. 10. N$ð1520Þ decay widths as a function of W. Photon
and Dalitz decays (the solid lines). The results are also compared
to the calculation for the Δð1232Þ case (the dashed lines).
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on jGT j2 is important when we look for the function
Γeþe−Nðq;WÞ, or for Γeþe−NðWÞ at a large W.
In Fig. 10 we present the results of Γeþe−NðWÞ in

comparison to the electromagnetic decay width ΓγNðWÞ.

In the same figure, we also compare our results for
Γeþe−NðWÞ, ΓγNðWÞ from the N$ð1520Þ resonance to the
corresponding ones from the Δð1232Þ decays [7]. In both
cases, one includes the combination of the valence quark
and meson cloud contributions.
The results from Fig. 10 imply that the two resonances

are almost equally relevant for a large W, suggesting that
the N$ð1520Þ may play an important role in dilepton decay
reactions.

VII. OUTLOOK AND CONCLUSIONS

We apply to the N$ð1520Þ → γN transition a model
which adds a covariant valence quark core contribution
with a meson cloud term. The meson cloud term is related
to the pion electromagnetic form factor, which is well
established in the timelike region, and the transition form
factors are first fixed in the spacelike region. The form
factor behavior in the timelike region is then predicted, as is
the N$ð1520Þ → γN decay width and the N$ð1520Þ Dalitz
decay, N$ð1520Þ → eþe−N. The timelike N$ð1520Þ tran-
sition form factors are dominated by the meson cloud
contributions.
In the range q2 ¼ 0–1 GeV2, the constant form factor

model, or QED approximation, that is usually taken in
the literature underestimates the electromagnetic coupling
of the N$ð1520Þ up to 2 orders of magnitude. This has a
large effect on q2 dependent observables as the N$ð1520Þ
Dalitz decay. The q2 dependence effect may be diluted in
Γeþe−NðWÞ, which is obtained by integrating over q2, but it
can be clearly observed if we look at the differential Dalitz
decay width dΓ

dq ðq;WÞ.
In line with the HADES results [3,13,14], the N$ð1520Þ

and Δð1232Þ decays compete, and at large energies the
former is certainly important.
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APPENDIX: REGULARIZATION OF
HIGH MOMENTUM POLES

As discussed in the main text, for a givenW, the squared
momentum q2 is limited by the condition q2 ≤ ðW −MÞ2.
Then, if one has a singularity for q2 ¼ Λ2, that singularity
will appear for values of W, such that Λ2 ≤ ðW −MÞ2,
or W ≥ M þ Λ.
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FIG. 9. N$ð1520Þ Dalitz decay width as a function of W. The
result of our model (the solid line) is compared to the result of the
constant form factor model (the dotted-dashed line).
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FIG. 10. N$ð1520Þ decay widths as a function of W. Photon
and Dalitz decays (the solid lines). The results are also compared
to the calculation for the Δð1232Þ case (the dashed lines).
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FIG. 8. Results of dΓdq forW ¼ 1.520, 1.800, and 2.100 GeV (the
solid lines) compared to the estimate from the constant form
factor model (the dotted lines).
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Adding form factor to N(1520)

Use of the form factor for proton (provided by G. Ramalho) and renormalize using 
the radiative decay.

Very tentative result, just to show 

the sensitivity preliminary
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first approximation determined by the photon coupling
with the pion, which is regulated by the pion electromag-
netic form factor Fπ. One expect then that the term B
in Eq. (3.5) to have the form

Fmc
2 ∝ Fπ(Q

2) τ3.

The missing factors in the previous expression are struc-
ture functions with a scale associated with the nucleon
core, which can be included in the function B. One can
represent that structure in an effective way using the form

B(Q2) = B(0)

(

Λ2

Λ2 +Q2

)3

Fπ(Q
2), (3.9)

where the Λ is a short range (large-Q2) regulated, which
can be determined by a fit the the data. The power of
the multipole function was chosen in order to mimic the
falloff from pQCD at vary large Q2. In a model with
Fπ ∝ 1/(Q2 logQ2), as the one that we consider here, we
obtain then Fmc

2 ∝ 1/(Q8 logQ2), closer to the expected
1/Q10 expected from pQCD1.

Note however, that for the purpose of the present
study, the exact power (3 or 4) is not very relevant, since
Λ2 is a short range scale (large Q2), and the behavior
of Fmc

2 is more sensitive to the low Q2 scale included in
Fπ(Q2).
To conclude, one can parametrize the meson cloud con-

tributions to the γ∗N → N(1535) form factors, consider-
ing an isovector contribution to the F ∗

2 form factor based
in Eq. (3.9). The factor B(0) is determined by the he-
licity amplitudes (see Table I), and the cut off Λ can be
determined by the fit to the proton data, combined with
our estimate for F ∗

2 (valence quark contribution).

B. γ∗N → N(1520) transition

For the discussion about the meson cloud contributions
to the γ∗N → N(1520) transition it is convenient to rep-
resent the transverse helicity amplitudes at the resonance
rest frame in the form

A1/2 =
1

F
GM −

1

4F
G̃4, (3.10)

A3/2 = −
√
3

4F
G̃4, (3.11)

where

F =
1

e

2MN

MR −MN

√

2

3

√

MNMRK

Q2
+

. (3.12)

1 According with a pQCD analysis the leading order contribution
to F ∗

2 comes from the N = 3 contribution (3 constituents) and

has the form F ∗

2 ∝ 1/Q2
· 1/Q2(N−1) = 1/Q6. The next leading

order contribution associated with a qq̄ excitation implies that
N → 5 (5 constituents),which correspond to the correction of
the previous estimate by a factor 1/Q4, leading to the estimate
Fmc
2 ∝ 1/Q10.

A1/2(0) ΓγN (MeV)

Estimate PDG limits

p 0.105±0.015 0.49±0.14 0.19–0.53

n −0.075±0.020 0.25±0.13 0.013–0.44

TABLE III: N(1535) → γN decay widths. A1/2 is in units

GeV−1/2.

|GT (0,MR)|
2 ΓγN (MeV)

Estimate PDG limits Model

p 0.68±0.05 0.43±0.03 0.31–0.62 0.34

n 0.53±0.04 0.34±0.03 0.30–0.64 0.34

TABLE IV: N(1520) → γN decay widths. GT (0,MR) is es-
timated by the amplitudes from Table II.

The form factors are in the Devenish representation. See
details in Appendix A.
In the previous expression, we use the function G̃4 to

represent

G̃4 = −4RGmc
4 = GM +GE , (3.13)

as a consequence of Eqs. (2.15)-(2.16).
We recall that the functionGmc

4 is used to represent the
meson cloud contribution to G̃4, since as discussed the
valence quark contribution to G̃4 is zero in the context of
the covariant spectator quark model. The consequence
of this result is that the valence quark contribution to
GM +GE is zero.

The corollary of this result is that the nonzero result
observed in the empirical data for GM + GE can be re-
garded as a consequence of the meson cloud effects, since
those effects are not included in our framework.
Based on the relations (3.10)-(3.11), we can then con-

clude that G̃4 can be used to parametrize the meson
cloud contributions to the amplitude A3/2 and for the
γ∗N → N(1520) transition in general. This observation
is consistent with the interpretation that the amplitude
A3/2 is dominated be meson cloud effects. For a more
detailded discussion check Refs. [20, 21, 23, 24, 27].
Note that according with Eqs. (2.15)-(2.16), Gmc

4 mod-
ifies only the form factor GE , and leaves GM unchanged.
When we look for the amplitudes (3.10)-(3.11), we notice,
however, that there is an extra correction the amplitude
A1/2 given by 1/

√
3 the effect of the meson cloud contri-

butions to A3/2.
To parametrize the meson cloud contribution to Gmc

4 ∝
A3/2 we start by nothing that A3/2 is dominated by
the isovector component. The isovector character of
the amplitude meson cloud component can also be in-
ferred directly from Table II. The isoscalar component is
AS

3/2 ≃ 0.01 and the isoscalar component is AV
3/2 ≃ 0.13

(all in units GeV−1/2). From that we conclude that

GCST
T (0,MR) = 0.73

Update of 2017 results  
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Single Quark Transition Model [GR, PRD 90, 033010 (2014)]

Input: N(1520), N(1535); Output: N(1650), N(1700),∆(1620),∆(1700)
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Bare quark CST description  
expected to work well  
in high Q2 region! 

Predictive power:  
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Prog.	Part.	Nucl.	Phys.	45,		
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Covariant Spectator quark-diquark model enables description of different 
resonance states (spin/orbital motion). 

 

Several applications: Δ(1232), N*(1440), N*(1535), N*(1520),..., dilepton 
mass spectrum. 

 

Consistent with experimental data at high Q2. 

 

Consistent with LQCD in the large pion mass regime informing on “pion 
cloud” effects. 

 

VMD and “pion cloud” sustained extension to the timelike region of the 
TFF of the Δ(1232) and N*(1520).  
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Outlook 
	

 
LQCD simulations below the N* threshold will help too refine 
interpretation provided by theoretical quark models. 
 
New experimental data at large Q2 and even more precise data in all 
ranges can improve interpretation of empirical results. 
 
Dynamical calculations of diquark vertices within CST to be done, to 
support quark-diquark picture for baryons, seen within Dyson-
Schwinger approach for dynamical quarks.   



Extension to Strangeness 

 
Timelike transitions appear as a  
unique opportunity to explore hyperon structure. 
N. Cabibbo and R. Gatto,  
Phys. Rev. Lett. 4, 313 (1960);  
Phys. Rev. 124, 1577 (1961).  
 
They are new windows for the role of 
diquarks in baryons, deduced from how form factors vary  
with quark composition. 
S. Dobbs, A. Tomaradze, T. Xiao,  
K. K. Seth and G. Bonvicini,  
Phys. Lett. B 739, 90 (2014)  
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Extension to strangeness in the Spacelike region with a 
global fit to lattice data and physical magnetic moments  

Extend the parametrization of the  
e.m. current to the valence quark  
d.o.f of the whole  baryon octet. 

single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,

j!q ¼ j1

"
$! % 6qq!

q2

#
þ j2

i&!'q'
2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,

ji ¼
1

6
fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ðuds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
"
3

2
jA1 þ 1

2

3% (

1þ (
jS1 % 2

(

1þ (

MB

MN
jS2

#
;

(19)

~%0B ¼ BðQ2Þ (
$"

3

2
jA2 %

1

2

1% 3(

1þ (
jS2

#
MB

MN
% 2

1

1þ (
jS1

%
;

(20)

TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).

B jSi jAi

p 1
6 ðfiþ % fi%Þ 1

6 ðfiþ þ 3fi%Þ
n 1

6 ðfiþ þ fi%Þ 1
6 ðfiþ % 3fi%Þ

%0 1
6 fiþ

1
18 ðfiþ % 4fi0Þ

&þ 1
18 ðfiþ þ 3fi% % 4fi0Þ 1

6 ðfiþ þ 3fi%Þ
&0 1

36 ð2fiþ % 8fi0Þ 1
6 fiþ

&% 1
18 ðfiþ % 3fi% % 4fi0Þ 1

6 ðfiþ % 3fi%Þ
'0 1

18 ð2fiþ þ 6fi% % 2fi0Þ % 1
3 fi0

'% 1
18 ð2fiþ % 6fi% % 2fi0Þ % 1

3 fi0
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single quark (3), one can write the electromagnetic current
associated with the baryon B in a impulse approximation
[1,3],

J!0B ¼ 3
X

!

Z
k

"#BðPþ; kÞj!q#BðP%; kÞ; (11)

where j!q is the quark current operator, Pþ (P%) is the final
(initial) baryon momentum and k the momentum of the
on-shell diquark, and ! ¼ fs;"g labels the scalar diquark
and the vectorial diquark polarization " ¼ 0,&. The factor
3 in Eq. (11) takes into account the contributions for the
current from the pairs (13) and (23), where each pair has
the identical contribution with that of the pair (12). The
polarization indices are suppressed for simplicity. The
integral symbol represents

Z
k
¼

Z d3k

2EDð2#Þ3
; (12)

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

Generally, the baryon electromagnetic current (11) can
be expressed as

J!0B ¼ ~e0B$
! þ ~%0B

i&!'q'
2MB

; (13)

where ~e0B and ~%0B are the functions of Q2, and, respec-
tively, correspond to the valence quark contributions for
the F1BðQ2Þ and F2BðQ2Þ form factors. To represent these
quantities for Q2 ¼ 0, we suppress the tildes. Note that in
Eq. (13) we omit the baryon spinors as in Eq. (1).

C. Quark current

The quark current operator j!q has a generic structure,
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2MN

; (14)

where MN is the nucleon mass and ji (i ¼ 1; 2) are SU(3)
flavor operators acting on the third quark of the jMAi or
jMSi state. In the first term 6qq!=q2 is included for com-
pleteness, but does not contribute for elastic reactions.

The quark current ji (i ¼ 1; 2) in Eq. (14), can be
decomposed as the sum of operators acting on quark 3 in
SU(3) flavor space,
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fiþ"0 þ

1

2
fi%"3 þ

1

6
fi0"s; (15)

where

"0 ¼
1 0 0
0 1 0
0 0 0

0
@

1
A; "3 ¼

1 0 0
0 %1 0
0 0 0

0
@

1
A;

"s '
0 0 0
0 0 0
0 0 %2

0
@

1
A

(16)

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ð uds ÞT .
The functions fi&ðQ2Þ (i ¼ 1; 2) are normalized by

f1nð0Þ ¼ 1 (n ¼ 0, &), f2&ð0Þ ¼ %&, and f20ð0Þ ¼ %s.
The isoscalar (%þ) and isovector (%%) anomalous magnetic
moments are defined in terms of the u and d quark anoma-
lous magnetic moments, %þ ¼ 2%u % %d and %% ¼ 2

3%u þ
1
3%d. In the previous works the quark anomalous magnetic
moments were adjusted to reproduce the experimental
magnetic moments of the nucleon and the $% [1,3]. In
this work however, we will readjust the u and d quark
anomalous magnetic moments as will be explained later.
To see explicitly the quark flavor contributions for the

electromagnetic current (14), we sum over the quark
flavors following Refs. [2,3], and get the coefficients

jAi ¼ hMAjjijMAi; (17)

jSi ¼ hMSjjijMSi; (18)

for i ¼ 1; 2. The results, corresponding to the states given
in Table I, are presented in Table II.

D. Valence quark contributions for the
electromagnetic form factors

Using the expressions derived in the previous work for
the nucleon form factors in the S-state approach [1], we
obtain the corresponding expressions for the octet baryons
B by replacing the nucleon coefficients jAi and jSi (i ¼ 1; 2)
by the respective baryon state,

~e 0B ¼ BðQ2Þ (
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TABLE II. Mixed symmetric and antisymmetric coefficients
for the octet baryons appearing in Eqs. (17) and (18).
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and physical magnetic moments.  
 

system at the physical point, given by the last column in
Table V (!2 per data point ¼ 1:93). Then, we can con-
clude that the nucleon data are described better than the
lattice data (!2 per data point of 2.9 and 5.2 for the sets
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dipole form factor GD ¼ ð1þ Q2

0:71Þ%2. The exception is the

neutron electric form factor. In the figure, the contributions
of the pion cloud are represented by the bands that fill the
difference between the valence quark contributions
(ZBGX0B) and the full result (GXB, solid line).
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2, and the function form
for the pion cloud contributions. Since the pion cloud
contributions are regulated by the cutoff !2 ¼ 1:24 GeV
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FIG. 6 (color online). "þ bare electromagnetic form factors determined by the global fit. The lines are the lattice regime (solid line)
and the physical regime (dashed line). The lattice data are from Ref. [52].
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Two	examples:	

from the experimental result for GMð0Þ, and also from the
lattice data. We recall again that this can be a consequence
of the difficulty in describing the ! lattice data. [See
Figs. 9 and 10.]

E. Electric charge and magnetic dipole radii

The electric charge squared radius for a charged particle
is usually defined as4

hr2Ei ¼ $ 6

GEBð0Þ
dGEB

dQ2

!!!!!!!!Q2¼0
: (71)

For a neutral particle the same expression can be used but
setting GEBð0Þ ! 1. The definition (71) has advantages for
comparing the radii of particles with different charges such
as p and "$, and one can relate the corresponding baryon
electric charge radii. As for the magnetic dipole squared
radius, the most common definition5 is

hr2Mi ¼ $ 6

GMBð0Þ
dGMB

dQ2

!!!!!!!!Q2¼0
: (72)

We assume in this case thatGMBð0Þ is not zero, neither very
small. The results for the electric charge squared radii and
the magnetic squared radii are, respectively, presented in
Tables VI and VII (see columns hr2Ei and hr2Mi).
Experimental values [51,66–71] are also included in
Table VI for hr2Ei, and in the caption of Table VII for hr2Mi.
Since in the present approach we can identify the va-

lence quark (bare) contributions and the pion cloud
contributions in the form factor GXB (X ¼ E, M), we
follow Eq. (67) and decompose GXB into

GXBðQ2Þ ¼ Gb
XBðQ2Þ þG!

XBðQ2Þ; (73)

where Gb
XBðQ2Þ ¼ ZBGX0BðQ2Þ and G!

XBðQ2Þ ¼
ZB"GXBðQ2Þ, are, respectively, the bare and pion cloud
contributions. Based on the decomposition (73) and the
definitions of radii (71) and (72), we can write

hr2Ei ¼ hr2Eib þ hr2Ei!; (74)

hr2Mi ¼ hr2Mib þ hr2Mi!; (75)
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FIG. 8 (color online). "$ bare electromagnetic form factors determined by the global fit. The lines are the lattice regime (solid line)
and the physical regime (dashed line). The lattice data are from Ref. [52].

4Some authors [65] exclude the factor GEBð0Þ from the hr2Ei
definition.

5Some authors [65] define hr2Mi without the factor GMBð0Þ, but
use

hr2Mi
GMBð0Þ to compare the values of different baryons.
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Extension to Strangeness in the timelike region  

2

in Refs. [25–27].

II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =

4πα2βC

3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α ≃ 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ ≫ 1), one has C ≃ 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]

|G(q2)|2 =

(

1 +
1

2τ

)

−1 [

|GM (q2)|2 +
1

2τ
|GE(q

2)|2
]

,

=
2τ |GM (q2)|2 + |GE(q2)|2

2τ + 1
. (2)

Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) ≃ GSL
M (−q2), (3)

GE(q
2) ≃ GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2
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take into account the Coulomb effects near the thresh-
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sion of the model for the nucleon based on the informa-
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the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
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II. FORMALISM

We start our discussion for the case of hyperons with
spin 1/2 and positive parity. Later we explain how the
formalism can be extended to spin 3/2 particles with pos-
itive parity. In the following we use MB for the mass of

the hyperon and τ = q2

4M2

B

.

In the one-photon-exchange approximation (equivalent
to the impulse approximation in spacelike) one can inter-
preted the e+e− → BB̄ transition as e+e− → γ∗ → BB̄,
and express the integrated cross section (in the e+e− rest
frame) as [5]

σBorn(q
2) =
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3q2

(

1 +
1

2τ

)

|G(q2)|2, (1)

where G(q2) is an effective form factors dependent on
the hyperon B, discussed next, α ≃ 1/137 is the fine-
structure constant, β is a kinematic factor defined by

β =
√

1− 1
τ
and C a factor associated with the baryon.

The factor C is equal to 1 for neutral baryons and
represent the Sommerfeld-Gamow factor for charged
baryons: C = y

1−exp(−y) , with y = πα
β

2MB√
q2
, that

take into account the Coulomb effects near the thresh-
old [5, 28, 29]. In the region of interest of the present
study, at large q2 (τ ≫ 1), one has C ≃ 1.

The effective form factor is a combination of the elec-
tric and magnetic (square) form factors with magni-
tude [5]
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,

=
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Equations (1) and (2) are very useful because they
show that, one can describe the (integrated) cross sec-
tion σBorn based on the magnitude of one unique effective
structure function, G(q2), and that the structure function
depend only on the magnitude of the magnetic and elec-
tric form factors. Note that the form factors GM and GE

are complex functions of q2 in the timelike region. It is
for that reason that the relations (1) and (2) are partic-
ularly appropriated in the study of σBorn(q2). One can
estimate the integrated cross section without taking into
account the phases associated (imaginary components)
of the form factors GM and GE .

In the present work we use a microscopic quark model
developed in the spacelike region to calculate GSL

M (−q2)
and GSL

E (−q2) [30, 31]. Our estimates in the spacelike
region is based on the high Q2 relation [6]:

GM (q2) ≃ GSL
M (−q2), (3)

GE(q
2) ≃ GSL

E (−q2). (4)

Using the previous relations we can calculate the mag-
nitude effective form factor |G(q2)| using Eq. (2) and
obtain then a direct estimate of the (integrated) cross
section, without any explicit reference to the complex
character of the form factors and their relative phases in
the timelike region. Our results are compared with data
from BaBar [7], BES-III [9] and CLEO [3, 4].

In the other cases, our estimates provide predictions
for future experiments and also a tentative estimate of
the region where we can start to see some effects of the
scaling (3) and (4) or some signs of the falloffsGM ∝ 1/q4

and GE ∝ 1/q4. The simplification of our calculation is
justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.
One can extend the analysis of the spin 1/2+ hyperons

to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
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justified for our (aimed) restriction to the high q2-region
(form factors are real functions). In the cases of devia-
tion from our estimate can be interpreted as an indica-
tion that we are still in the non-perturbative region and
that the phases of the form factors need to be taken into
account.

One can extend the analysis of the spin 1/2+ hyperons
to the spin 3/2+ based on the effective form factor (2),
re-interpreting GM as the sum of the magnetic dipole
and magnetic octupole form factors and GE as the sum
of the electric (charge) and electric quadrupole form fac-
tors [10]. In those conditions we can apply the previous
formalism to the decuplet baryon case, in particular to
the case of the Ω− baryon.

III. MODEL (THEORY)

The covariant spectator quark model have been ap-
plied to the study of baryons systems including the the
nucleon, the octet baryon and the decuplet baryon (in-
cluding the Ω−) [30–36].

The model for the nucleon was calibrated by the elec-
tromagnetic form factor data for the proton and the neu-
tron [33]. The model for the octet is an SU(3) exten-
sion of the model for the nucleon based on the informa-
tion from lattice QCD for the octet [30]. The model for
the decuplet is an SU(3) extension of the model for the
∆(1232) [37, 38], constrained by the scarce available lat-
tice data for the decuplet form factors [31]. The model for
the Ω− was later re-calibrated with the use of the first lat-
tice QCD calculation of the Ω− form factors at the phys-
ical mass and used to determine the electric quadrupole
and magnetic octet moments [36].

The estimated based on the covariant spectator quark
model provide a good description of the nucleon data and
the octet baryon data when the meson cloud contribution
is taken into account [30, 35]. In the case of the decuplet
baryon, no meson cloud contributions are considered in
Ref. [31, 36]. It is worth noticing, however, that although
those effects are expected to be significant (≈ 35%) in the
case of the ∆(1232) due to the effect of the pion, they are
expected to be much smaller in the case of the Ω−. In
that case the pion excitations are suppressed due to the
content of the valence quark core (only strange quarks)
and the kaon excitations are reduced due to the heavy
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Full line: 
Dashed lines: 
  

G(q2) = G(2M2 � q2)

G(q2) = G(4M2 � q2)

G(q2) = G(�q2)

This enables: 
 
•  Predictions for future experiments  
•  Guide determination of onset of  
-scaling effects 
-perturbative QCD falloffs : GM ∝ 1/q4 and GE ∝ 1/q4.  



Covariant Spectator quark-diquark model enables description of different 
resonance states (spin/orbital motion). 

 

Several applications: Δ(1232), N*(1440), N*(1535), N*(1520),baryon 
octet, octet to decuplet transitions, DIS, dilepton mass spectrum. 

 

Consistent with experimental data at high Q2. 

 

Consistent with LQCD in the large pion mass regime informing on “pion 
cloud” effects, and high q2 behavior of time-like hyperon FFs. 

 

VMD and “pion cloud” sustained extension to the timelike region of the 
TFF of the Δ(1232) and N*(1520).  
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Outlook 
	

 
LQCD simulations below the N* threshold will help too refine 
interpretation provided by theoretical quark models. 
 
LQCD data on the baryon octet e.m. FF’s precious source of 
information, due to scarcity of experimental information. 
 
New experimental data at large Q2 and even more precise data in all 
ranges can improve interpretation of empirical results. 
 
Dynamical calculations of diquark vertices within CST to be done, to 
support quark-diquark picture for baryons, seen within Dyson-
Schwinger approach for dynamical quarks.   
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