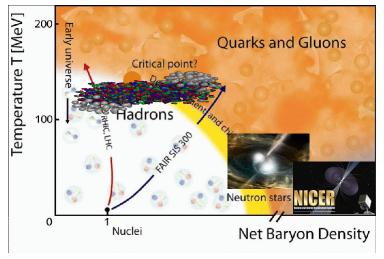
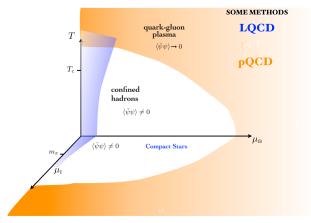
On the phase structure and equation of state of strongly-interacting matter


Rainer Stiele

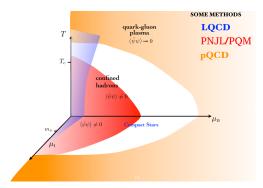
in collaboration with Wanda Alberico, <u>Nicolas Baillot</u>, Andrea Beraudo, Renan C. Pereira, Pedro Costa, Hubert Hansen, Mario Motta

FAIR next generation scientists - 6th Edition Workshop, 24/05/2019


Observations on the Phase Diagram of QCD

GSI/FAIR; UrQMD; LIGO; NICER

Phase structure of the strong interaction


$$\mathcal{L}_{\text{QCD}} = \bar{q} \left[i \gamma_{\mu} \left(\partial^{\mu} - i g A^{\mu} \right) - m + \gamma_{0} \mu_{f} \right] q - \frac{1}{4} G_{\mu\nu}^{a} G_{a}^{\mu\nu}$$

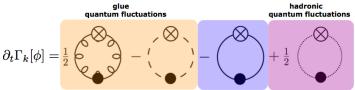
after Massimo Mannarelli, Mannarelli-IAPS-2016, pdf

Phase structure of the strong interaction

$$\mathcal{L}_{\text{QCD}} = \bar{q} \left[i \gamma_{\mu} \left(\partial^{\mu} - i g A^{\mu} \right) - m + \gamma_{0} \mu_{f} \right] q - \frac{1}{4} G_{\mu\nu}^{a} G_{a}^{\mu\nu}$$

after Massimo Mannarelli, Mannarelli-IAPS-2016, pdf

 $\mathcal{L}_{\text{PNJL/POM}}$


Outline

- 1 Introduction: Different ways to describe the generation of constituent quark masses
- Results: Nambu–Jona-Lasinio model vs. Quark-Meson model
- 3 Results: Comparison to lattice results
- 4 Conclusions

From QCD to the PNJL and PQM model

Results: N.II vs. QM

$$\mathcal{L}_{\mathrm{QCD}} = \bar{q} \left[\mathrm{i} \, \gamma_{\mu} \left(\partial^{\mu} - \mathrm{i} \, g A^{\mu} \right) - m + \gamma_{0} \, \mu_{f} \right] q - \frac{1}{4} \, G_{\mu\nu}^{a} \, G_{a}^{\mu\nu}$$

free energy

quark quantum fluctuations

RG-scale k: $t = \ln k$

NJL-model

OM-model

PNJL-model

PQM-model

 $\mathcal{L}_{ ext{NII}}$

 \mathcal{L}_{OM}

 $\mathcal{L}_{\mathsf{PNII}}$

 $\mathcal{L}_{ ext{POM}}$

J.-M. Pawlowski, Talk Pawlowski ERG2012.pdf

Results: N.II vs. QM

$$\mathcal{L}_{PNJL/PQM} = \mathcal{L}_{chiral} + \mathcal{L}_{Polyakov-loop} + \mathcal{L}_{kinetic,interaction}$$

$$\mathcal{L}_{PNJL/PQM} = \mathcal{L}_{chiral} + \mathcal{L}_{Polyakov-loop} + \mathcal{L}_{kinetic,interaction}$$

$$\mathcal{L}_{\text{chiral}}^{\text{NJL}} = G \left[\left(\bar{q}q \right)^2 + \left(\bar{q}i\gamma_5 \vec{\tau}q \right)^2 \right] - m_0 \left(\bar{q}q \right)$$

A. Cabo Montes de Oca, Eur. Phys. J. C (2018) 78

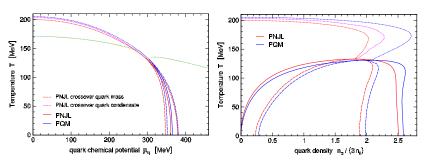
$$\mathcal{L}_{PNJL/PQM} = \mathcal{L}_{chiral} + \mathcal{L}_{Polyakov-loop} + \mathcal{L}_{kinetic,interaction}$$

$$\mathcal{L}_{\text{chiral}}^{\text{NJL}} = G\left[\left(\bar{q}q\right)^2 + \left(\bar{q}i\gamma_5\vec{\tau}q\right)^2\right] - m_0\left(\bar{q}q\right)$$

$$\mathcal{L}_{\text{chiral}}^{\text{QM}} = \bar{q} \left[g \left(\sigma + i \gamma_5 \vec{\tau} \vec{\pi} \right) \right] q - h \sigma + \frac{\lambda^2}{4} \left(\sigma^2 + \pi^2 - v^2 \right)^2$$

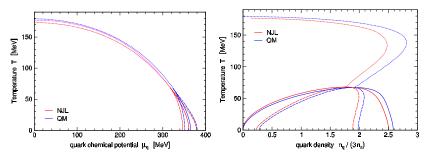
A. Cabo Montes de Oca, Eur. Phys. J. C (2018) 78; P. Veselý, NN potential.pdf

Results: N.II vs. QM


$$\Omega_{\text{PNJL/PQM}}\left(m_{q}, \Phi, \bar{\Phi}, T, \mu\right) = U_{\text{chiral}}\left(m_{q}\right) + \\ + \mathcal{U}_{\text{Polyakov-loop}}\left(\Phi, \bar{\Phi}, T(, \mu)\right) + \\ + \Omega_{\bar{q}q}\left(m_{q}, \Phi, \bar{\Phi}, T, \mu\right)$$

$$U_{\text{chiral}}^{\text{NJL}} = \frac{(m_q - m_0)}{4G}$$

$$U_{\text{chiral}}^{\text{QM}} = \frac{\lambda^2}{4} (\sigma^2 - v^2)^2 - h\sigma; \quad m_q = g\sigma$$


 Comparing results of both models using the same vacuum phenomenlology (which wasn't done so far!)

	<i>v</i> · · ·	"		,	'/	m_{σ}	-		Λ
Value [MeV]	92.4	135	497.7	514.8	957.8	728.9	367.7	549.5	602.3

W. Alberico, A. Beraudo, R. C. Pereira, P. Costa, H. Hansen, M. Motta and RS, in preparation

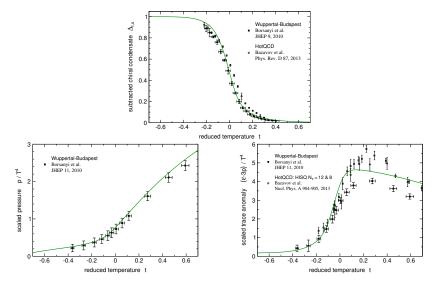
Comparison of NJL and QM model results


W. Alberico, A. Beraudo, R. C. Pereira, P. Costa, H. Hansen, M. Motta and RS, in preparation

⇒ results for NJL vs QM show that differences come from the chiral part, as to be expected

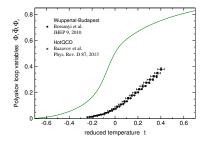
Introduction

Comaprison of PNJL and PQM model results

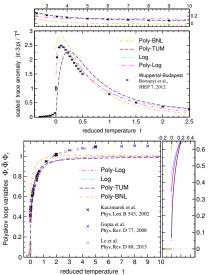

Lines of constant entropy per baryon S/N = s/n

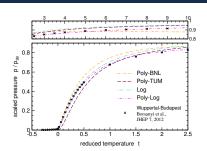
W. Alberico, A. Beraudo, R. C. Pereira, P. Costa, H. Hansen, M. Motta and RS, in preparation

Introduction


Such a model vs. lattice

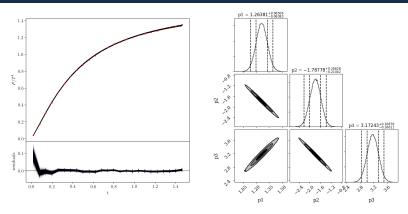
Introduction Results: NJL vs. QM Results: model vs. lattice Conclusions


Such a model vs. lattice


Chiral transition and thermodynamics compare well ... but

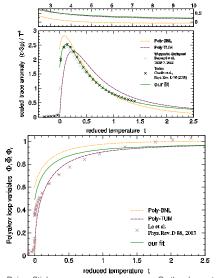
- The Polyakov-loop (~order parameter of confinement) rises faster...
- ⇒ How is the situation in pure gauge theory (gluons only) ?

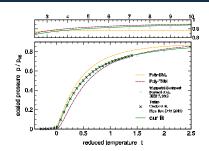
Model ingredient vs. lattice in pure gauge



⇒ quite some scatter between lattice and model

Introduction Results: NJL vs. QM Results: model vs. lattice Conclusions


New fit to pure gauge lattice data



N. Baillot, H. Hansen, RS, in preparation data from M. Caselle, A. Nada, and M. Panero, Phys. Rev. D 98 (2018)

Perform a new fit of the parameters of the Polyakov-loop potential to today's lattice data in pure gauge theory

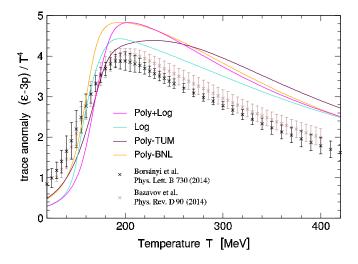
Model ingredient vs. lattice in pure gauge

⇒ comparable situation as in QCD:

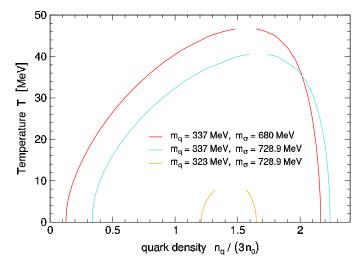
thermodynamics fits well, but order parameter for deconfinement overshooted

Conclusions

- To describe the region of the phase diagram that is not accessible with ab-initio methods chose a framework that describes fundamental properties: constituent guark masses and deconfinement.
- Quark interaction can be described by point-like interaction or due to meson exchange.
- If both models are adjusted to the same vacuum physics both descriptions give compatible results.
- Ab-initio results can be ~reproduced at zero/small density.
- Deviations for the 'order parameter' for deconfinement already in pure gauge theory.



Thank You for your attention!


- To describe the region of the phase diagram that is not accessible with ab-initio methods chose a framework that describes fundamental properties: constituent quark masses and deconfinement.
- Quark interaction can be described by point-like interaction or due to meson exchange.
- If both models are adjusted to the same vacuum physics both descriptions give compatible results.
- Ab-initio results can be ~reproduced at zero/small density.
- Deviations for the 'order parameter' for deconfinement already in pure gauge theory.

Such a model vs. lattice

Densities at phase transition

