Status and physics program of the CBM experiment at FAIR

Ilya Selyuzhenkov
(GSI / EMMI / MEPhi)
for the CBM Collaboration

CBM physics symposium
GSI, Darmstadt
October 3, 2018
Rich structure of the QCD matter phase diagram

Gordon Baym et al., RPP81 (2018) 056902
Crossover phase transition at high T and small μ_b

Hadron resonance gas "semi" quark-gluon plasma quark-gluon plasma

$T_c \sim 150$ MeV $\sim (2-3)T_c$
Phase transition with increasing density at high μ_b

Nuclear matter
Matter compression
Quarkyonic matter

$\sim 2n_0 = 2 \times 0.16 \text{ fm}^{-3}$
$\sim (4-7)n_0$
Dense Baryonic Matter

Neutron stars

- Temperature: $T < 10$ MeV
- Density: $\rho < 10 \rho_0$
- Lifetime / Reaction time: $\sim \text{infinity}$

Neutron star merger

- Temperature: $T \sim 10$-100 MeV
- Density: $\rho < 2 - 6 \rho_0$
- Lifetime / Reaction time: $T \sim 10 \text{ ms}$

Heavy ion collisions

- Temperature: $T < 120$ MeV
- Density: $\rho < 5 - 15 \rho_0$
- Lifetime / Reaction time: $t \sim 10^{-23} \text{ s}$
Net-baryon density reaches a value 5-15 times of the normal matter:
- experimentally access the region of mixed / quarkyonic phase
CBM physics and observables

Quark matter equation-of-state at large baryon densities, coexistence (quarkyonic) & partonic phases:

- Hadron yields, collective flow, correlations, fluctuations
- (Multi-)strange hyperons ($K, \Lambda, \Sigma, \Xi, \Omega$) production at (sub)threshold energies

M. Orsaria et.al. PRC89 015806 (2014)
CBM physics and observables

Chiral symmetry at large baryon densities:

- In-medium modifications of light vector mesons $\rho, \omega, \phi \rightarrow e^+e^- (\mu^+\mu^-)$ via dilepton measurements

Electromagnetic radiation of produced matter
CBM physics and observables

Charm production and propagation at threshold energies
- Excitation function in p+A collisions (J/ψ, ψ', D^0, D^\pm)
- Charmonium suppression in cold nuclear matter

![CBM SIS100 graph](image)

ALICE JHEP 1207 (2012) 191
arXiv:1205.4007
CBM physics and observables

Strange nuclear matter:
 • Λ-N, Λ-Λ interaction
 • (Double-)lambda hypernuclei
 • Meta-stable strange states

A. Andronic, PLB697 203 (2011)
Experiments in the high net-baryon density

- **J-PARC-HI**: 2.0 - 6.2 GeV
- **STAR (FXT)**: 3.0 - 200 GeV
- **STAR (collider)**: 4.9 - 17.3 GeV
- **NA61**: 2.4 - 2.6 GeV
- **HADES**: 2.7 - 11.0 GeV
- **MPD**: 2.7 - 5.0 (8.5) GeV
- **CBM**: 2.0 - 3.5 GeV
- **BM@N**: 1.8 - 2.7 GeV

Collision Energy $\sqrt{s_{NN}}$ (GeV)
CBM will operate at high reaction rates:

$10^5 - 10^7$ Au+Au reactions/sec
Main experimental requirements

- High statistics needs high event rates: \(10^5 - 10^7\) Au+Au reactions/sec

- Particle identification: hadrons and leptons, displaced (\(\sigma \approx 50 \, \mu\text{m}\)) vertex reconstruction for charm measurements

- Fast, radiation hard detectors & front-end electronics

- Free-streaming readout & 4 dimensional (space+time) event reconstruction

- High speed data acquisition & performance computing farm for online event selection
Compressed Baryonic Matter (CBM) experiment at FAIR
SIS100 primary beams:

- 10^9 s Au up to 11 GeV/u
- 10^9 s C, Ca, ... up to 14 GeV/u
- 10^{11} s p up to 29 GeV
HADES: p+p, p+A, A+A
limited to low multiplicity A+A
optimized for dileptons

CBM: p+p, p+A, A+A
designed for high multiplicity
general purpose detector

Complementary operation of HADES and CBM at FAIR
CBM area excavation
CBM detector subsystems

- **Dipole Magnet**: bends charged particle's trajectories
- **STS (Silicon Tracking System)**: charged particle tracking
- **MVD (Micro-Vertex Detector)**: secondary vertex reconstruction
- **RICH (Ring Imaging Cherenkov)**: electron identification
- **TRD (Transition Radiation Detector)**: hadron identification
- **TOF (Time of Flight detector)**: hadron identification
- **MUCH (MUon CHambers)**: muon tracking & identification
- **ECAL (Electromagnetic Calorimeter)**: electron/photon identification
- **PSD (Projectile Spectator Detector)**: collision centrality and reaction plane determination
- **FLES (First-level Event Selector)**: online reconstruction / event selection
CBM subsystems: high performance computing

FAIR/GSI Green cube

DAQ / FLES (First-level Event Selector) online reconstruction / event selection
Subsystems preparation status

TDRs approved by FAIR

Dipole Magnet
- Technical Design Report for the CBM
- Superconducting Dipole Magnet
- The CBM Collaboration
- November 2012

STS
- Technical Design Report for the CBM
- Silicon Tracking System (STS)
- The CBM Collaboration
- GSI Report 2013-4 October 2013

RICH
- Technical Design Report for the CBM
- Ring Imaging Cherenkov (RICH) Detector
- The CBM Collaboration
- April 2013

TOF
- Technical Design Report for the CBM
- Time – of – Flight System (TOF)
- The CBM Collaboration
- March 2013

MUCH
- Technical Design Report for the CBM
- Muon Chamber (MUCH)
- The CBM Collaboration
- December 2013

PSD
- Technical Design Report for the CBM
- Projectile Spectator Detector (PSD)
- The CBM Collaboration
- March 2013

TDR in preparation

MVD

TRD

ECAL

DAQ / FLES
Performance studies
CBM event and track reconstruction

central AuAu@10AGeV
Particle identification: light hadrons

Beta (TOF detector) vs. charge*momentum (STS detector)
Particle identification: electrons and light nuclei

RICH (electrons) TRD+TOF
Multi-strange reconstruction

\[\Lambda \rightarrow p + \pi^- \]

\[\Xi^- \rightarrow \Lambda + \pi^- \]

Decay topology reconstruction using the KFParticleFinder package

See talk by I. Vassiliev
Fluctuations of conserved quantities: net-protons

Moments:
1st - mean, 2nd - variance (σ)
3rd - skewness (s), 4th - kurtosis (κ)

proton reconstruction efficiency

sufficient proton coverage at midrapidity

CBM SIS100

UrQMD Au+Au 10AGeV
Performance for directed flow (v_1) of strange hyperons

"input" model v_1 is recovered using "data-driven" method
Strange nuclear matter

- Λ-N, Λ-Λ interaction
- (Double-)lambda hypernuclei
- Meta-stable strange states

A. Andronic, PLB697 203 (2011)

\[^3\Lambda H \rightarrow ^3\text{He} + \pi^- \]
Dilepton measurements

Chiral symmetry at large baryon densities:

- In-medium modifications of light vector mesons $\rho, \omega, \phi \rightarrow e^+e^- (\mu^+\mu^-)$ via dilepton measurements

Electromagnetic radiation of produced matter
Dilepton measurements: e^+e^- and $\mu^+\mu^-$

di-electrons

$N \times BR$ weighted pairs/N_{evt}

CBM Simulation, Au+Au $\sqrt{s_{NN}} = 4.11$ GeV, $N_{evt} = 5.0M$

RICH+TRD+TOF
- E_+
- π_{Dalitz}
- η_{Dalitz}
- ϕ_{Dalitz}
- $\eta_{in-medium SF}$
- $\phi_{in-medium SF}$
- QGP rad

m_{inv} (GeV/c^2)

di-muons

m_{inv} (GeV/c^2)

See talk by T. Galatyuk
Charm performance: $\text{J/}\psi \rightarrow \mu^+\mu^- / e^+e^-$ reconstruction

$p+\text{Au } 30\text{GeV}$

Multiplicity from HSD

$\sigma = 32.4 \text{ MeV/c}^2$
$S/B = 0.14$
$\text{Eff} = 11.6\%$

$\text{central Au+Au } 10 \text{ A GeV}$

Multiplicity from UrQMD

$\text{J/}\psi \rightarrow e^+e^-$
CBM FAIR phase-0 program
(before the start of operation in 2025)

• Use 430 out of 1100 CBM RICH multi-anode photo-multipliers (MAPMT) in HADES RICH photon detector (2019)

• Use 10% of the CBM TOF modules including read-out chain at STAR/RHIC (BES II 2019/2020)

• 4 Silicon Tracking Stations in the BM@N in JINR/Dubna (start 2020 with Au-beams up to 4.5 A GeV)

• Project Spectator Detector at the BM@N experiment (2020). Tests and performance studies at the NA61/SHINE SPS experiment.

• mini CBM at GSI/SIS18
 full system test with high-rate A-A collisions (2019-2021)
Summary

CBM physics program at SIS100:
• Precision study of the QCD phase diagram in the region of extreme high net-baryon densities.

Unique measurements of rare diagnostic probes with CBM:
• High-precision multi-differential measurements of hadrons incl. multistrange hyperons and dileptons for different beam energies and collision systems.

Key experimental requirements:
• high-rate capability of detectors and DAQ
• online event reconstruction and selection

Status of CBM experiment preparation:
• Technical Design Reports: 6 approved, 3 in preparation
• Extensive performance studies for many physics observables
• FAIR phase-0 program targeted towards usage and understanding of major components
The CBM Collaboration: 55 institutions, 470 members

China
CCNU Wuhan
Tsinghua Univ.
USTC Hefei
CTGU Yichang

Czech Republic
CAS, Rez
Techn. Univ.Prague

France
IPHC Strasbourg

Germany
Darmstadt TU
FAIR
Frankfurt Univ. IKF
Frankfurt Univ. FIAS
Frankfurt Univ. ICS
GSI Darmstadt
Giessen Univ.
Heidelberg Univ. P.I.
Heidelberg Univ. ZITI
HZ Dresden-Rossendorf
KIT Karlsruhe
Münster Univ.
Tübingen Univ.
Wuppertal Univ.
ZIB Berlin

India
Aligarh Muslim Univ.
Bose Inst. Kolkata
Panjab Univ.
Univ. of Jammu
Univ. of Kashmir
Univ. of Calcutta
B.H. Univ. Varanasi
VECC Kolkata
IOP Bhubaneswar
IIT Kharagpur
IIT Indore
Gauhati Univ.

Korea
Pusan Nat. Univ.

Romania
NIPNE Bucharest
Univ. Bucharest

Poland
AGH Krakow
Jag. Univ. Krakow
Warsaw Univ.
Warsaw TU

Russia
IHEP Protvino
INR Troitzk
ITEP Moscow
Kurchatov Inst., Moscow
VBLHEP, JINR Dubna
LIT, JINR Dubna
MEPHI Moscow
PNPI Gatchina
SINP MSU, Moscow

Ukraine
T. Shevchenko Univ. Kiev
Kiev Inst. Nucl. Research

30th CBM Collaboration Meeting, 24-28 September 2018, Wuhan, China
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR

CBM Collaboration (T. Ablyazimov, Dubna, JINR et al.) Show all 587 authors

Jul 6, 2016 - 11 pages
(2017-03-23)
DOI: 10.1140/epja/i2017-12248-y
Experiment: GSI-FAIR-CBM

Abstract (Springer)
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SiS100 (√sNN = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

Abstract (arXiv)

https://inspirehep.net/record/1474181