

Status Quo

Ion Sources for Beam Time Operation

Terminal North

Terminal South

HLI

Increas the Number of High Current Ion Sources

today future

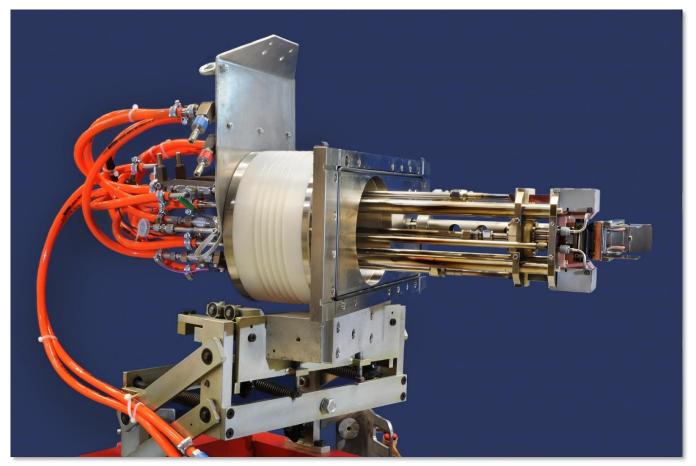
VARIS: 6 **⇒** 12

Uranium VARIS: 2 → 3+

MUCIS NEW: $2 \longrightarrow 6$

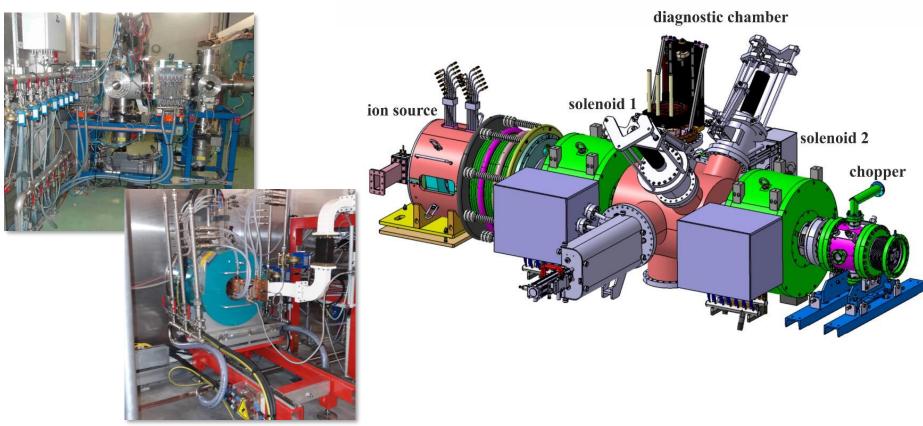
MUCIS OLD: $2 \implies 3$

CHORDIS: $3 \implies 6$



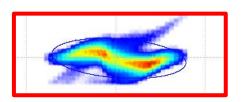
Renewing of PIG Sources

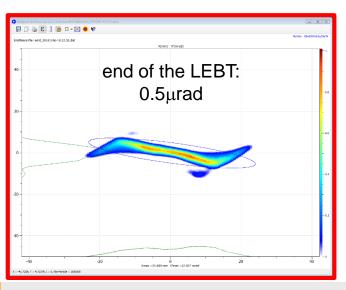
After 5 years and 3500 hrs of work...

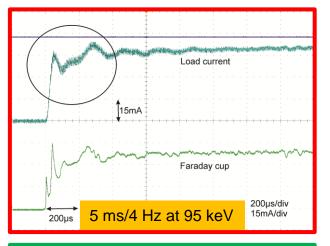


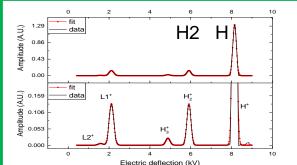
...10 PIG sources are completely renewed and ready for operation for the time after more than 40 years of operation.

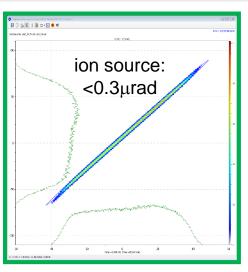
p-LINAC Injector for FAIR

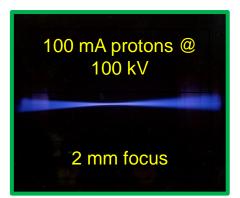

- Collaboration between GSI and CEA/Saclay
- Injector build up and commissioned at CEA (similar to IFMIF)
- 100mA p @ 95keV inside 0.3μrad in front of RFQ, pulse >40μs @ 2.7Hz
- 3GHz RF source with double solenoid focussing LEBT

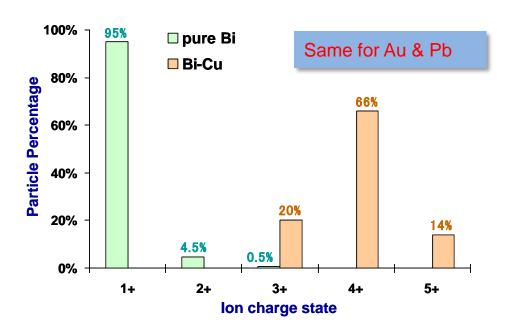


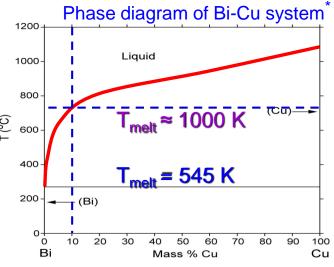

p-LINAC Injector for FAIR




- Beam quality:
- Spectrum & proton current: >85% and up to 125mA full beam ✓
- Emittance of the ion source: <0.3µrad, no filamentation √
- Pulse shape and duty cycle X
- Emittance of the LEBT: 60% higher as expected X




Development of New Elements for High Current Ion Sources



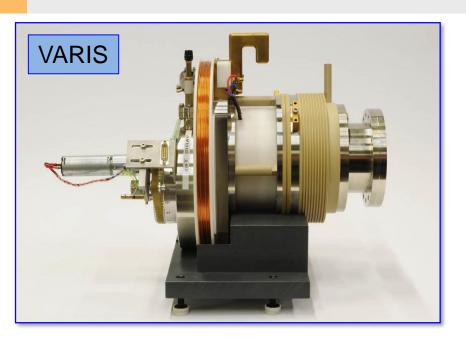
Challenges with Au, Pb and Bi:

- > Soft and fusible metals with low melting point
- > Operation with low discharge current
- > Danger of melting of the cathode material
- > High flux of neutrals from the surface

*Calculated Phase Diagram from NIST, Metallurgy Division, Material Measurement Laboratory

Bi-Cu cathodes:

- > Cu admixture between 8% and 15%
- Discharge currents up to 900 A
- Stable operation
- > Good pulse-to-pulse repetition
- > 15 mA of Bi4+ in front of the RFQ


Increase the Offer of Ion Species

Element	Ion Beam	Ion Source	Duty Factor	Beam current in front of the RFQ	Particles in 100 μs pulse	Space-charge limit RFQ
CH ₄	$^{12}\text{CH}_3^+ \rightarrow ^* p$	MUCIS	2 Hz / 1 ms	$3 \text{ mA} \rightarrow *3 \text{ mA}$	1.9·10 ¹²	3.8 mA
N_2	$^{14}N_{2}^{+}$	CHORDIS	5 Hz / 1 ms	4 mA	2.5·10 ¹²	7 mA
Ar	⁴⁰ Ar ⁺	MUCIS	5 Hz / 1 ms	20 mA	1.2·10 ¹³	10 mA
	⁴⁰ Ca ²⁺	PIG	50 Hz / 5 ms	100 μΑ	3.1·10 ¹⁰	5 mA
Ca	⁴⁸ Ca ¹⁰⁺	ECR	DC	100 μΑ	6.3·109	-
Ni	58Ni ²⁺	VARIS	1 Hz / 0.5 ms	5 mA	1.6·10 ¹²	7.3 mA
Kr	⁸⁶ Kr ²⁺	MUCIS New	5 Hz / 1 ms	7 mA	2.2·10 ¹²	10.8 mA
Ag	$^{107}{ m Ag}^{2+}$	VARIS	1 Hz / 1 ms	10 mA	3.1·10 ¹²	13.4 mA
Sn	¹¹² Sn ¹⁵⁺	ECR	DC	25 μΑ	109	-
Xe	¹²⁴ Xe ³⁺	MUCIS New	5 Hz / 1 ms	4 mA	8.3·10 ¹¹	10.3 mA
Au	¹⁹⁷ Au ⁴⁺	VARIS	0.5 Hz / 0.5 ms	4.5 mA	7·10 ¹¹	12.3 mA
Pb	²⁰⁸ Pb ⁴⁺	VARIS	0.5 Hz / 0.4 ms	5 mA	7.8·10 ¹¹	13 mA
Bi	²⁰⁹ Bi ⁴⁺	VARIS	0.5 Hz / 0.5 ms	12 mA	1.9.1012	13.1 mA
U	238U4+	VARIS	1 Hz / 0.5 ms	12 mA	1.9·1012	15 mA

^{*} behind the gas stripper

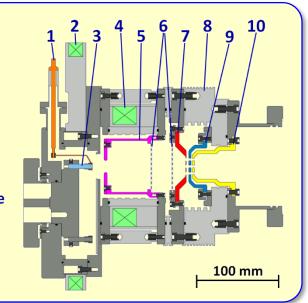
Features:

- Optimized for Uranium: 67% of U⁴⁺
- High emission current density: 170 mA/cm²
- NO water cooling is necessary
- Improved positioning of coils and grids
- Very compact system

Technical data:

Revolver with 17 Cathodes

2 Solenoids: 0.1 and 0.2 Tesla

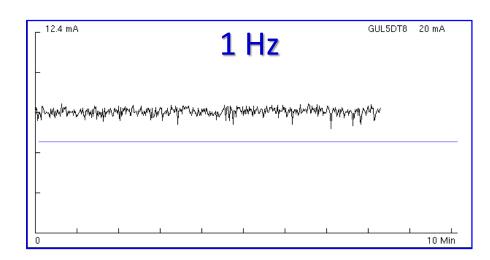

Arc current: up to 2 kA

Typical duty cycle: 1 Hz / 0.5 ms

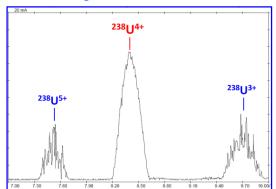
Working Material: ductile Metals

Life time: ~1 Week (Uranium)

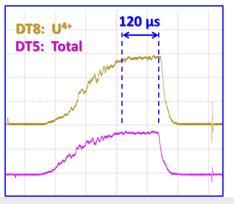
- 1 Ignition trigger
- 2 Coil 1
- 3 Cathode
- 4 Coil 2
- 5 Anode
- 6 Grids
- 7 Plasma electrode
- 8 Isolator
- 9 Screening elect.
- 10 Ground elect.


Well established operation with 1 Hz / 0.5 ms

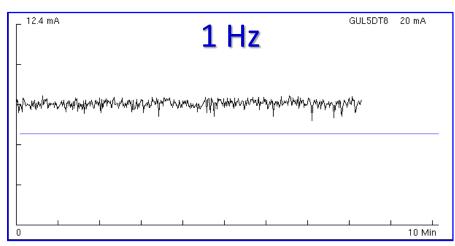
- High production efficiency of U⁴⁺ ions (67% of U⁴⁺ in the spectrum)
- Proper beam pulse shape (with a flat top over 120 μ s)
- Excellent pulse-to-pulse stability (intensity fluctuations < 12%)
- Beam current in front of the RFQ:
 up to 15 mA

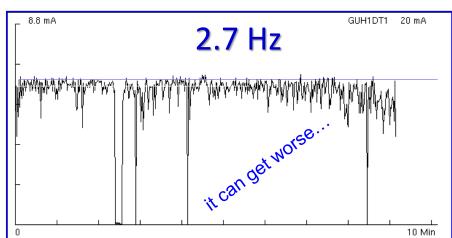

Operation with 2.7 Hz / 0.5 ms

- Ignition failures
- Extraction breaks
- Performance drop


VARIS performance with **U** by increasing the repetition rate (pulse length = **0.5 ms**)

Temporal profile of U⁴⁺ beam

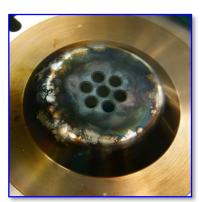

Well established operation with 1 Hz / 0.5 ms


- High production efficiency of U⁴⁺ ions (67% of U⁴⁺ in the spectrum)
- Proper beam pulse shape (with a flat top over 120 μ s)
- Excellent pulse-to-pulse stability (intensity fluctuations < 12%)
- Beam current in front of the RFQ:
 up to 15 mA

Operation with 2.7 Hz / 0.5 ms

- Ignition failures
- Extraction breaks
- Performance drop

VARIS performance with **U** by increasing the repetition rate (pulse length = **0.5 ms**)



Inhibiting factors:

- Increased T_{surface} of the cathode
 ⇒ short circuit bridges ⇒ arc ignition failures
- Higher flux of neutrals from the surface
 shifting the spectrum to the lower charge states
- Increased T of extraction electrodes
 ⇒ increased breakdown prob ⇒ sparking in the extr. sys.
- Reduce discharge current (as a consequence)
 reduced plasma density lower beam current

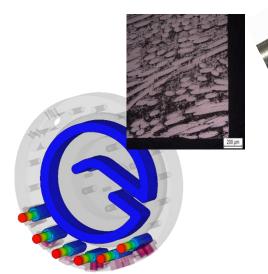
2.7 Hz Operation for Uranium (work together with framatome &

Possible Solutions:

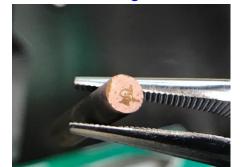
-Reduce of total pulse length by zero L resistances - done, positive effect observed

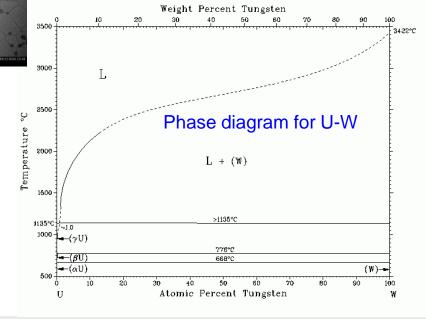
-Using U-W alloy to increase the melting temperature - no significant improvement

-Using U-Zr alloy to increase the melting temperature - in preparation (new oven needed)


-Cooling the of the electrodes - in preparation

-Use of threaded electrodes - in preparation

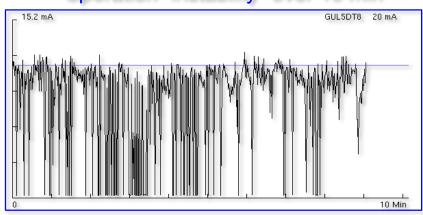

100 µs faster rise time



Cu sputtered U electrode; Goal: Soldering of U on Cu

framatome

cooled electrode holder


2.7 Hz Operation for Uranium (U-W15) Electrodes

Actual problems:

- "Bad phases" in cathode operation:
- → ignition failures (> 50% of beam pulses are failed even with P_{ZG} = MAX)
- → very unstable arc discharge => => very noisy beam pulse (intensity fluctuations up to 70%)
- → no pulse-to-pulse stability
- → tuning the IS parameters doesn't help=> it burns out by itself
- → "bad phase" can take from 5 to 30 min
- Lifetime of cathodes:
- → up to 7 hours with 2.8 Hz incl. total time of "BPh" ~1.5 hours

Operation "instability" over 10 min

2nd Supplier for Uranium:

framatome

BUDGETARY QUOTATION DATE: 9/8/2015

FROM: Manufacturing Sciences Corporation GSI Helmholtzzentrum für Schwerionenforsch 804 South Illinois Avenue Oak Ridge, TN 37830

TELEPHONE +49 6159 71 2691 TELEFAX +49 6159 71 2166 e-mail B.Lommel@gsi.de TELEPHONE

TELEFAX (865)481-3142 e-mail

MSC QUOTATION # 15-78

FQ NUMBER

ITEM	QUANTITY	DESCRIPTION	UNIT PRICE	TOTAL PRICE
1	250	DEPLETED URANIUM ELECTRODES 5.7 MM X 30 MM. CHEMISTRY AND ISOTOPIC DATA INCLUDED	\$353	\$88,250

Menge Uran Elektroden Je Bestellung mindestens 100

ALL WORK IN ACCORDANCE WITH MSC STANDARD COMMERCIAL TERMS

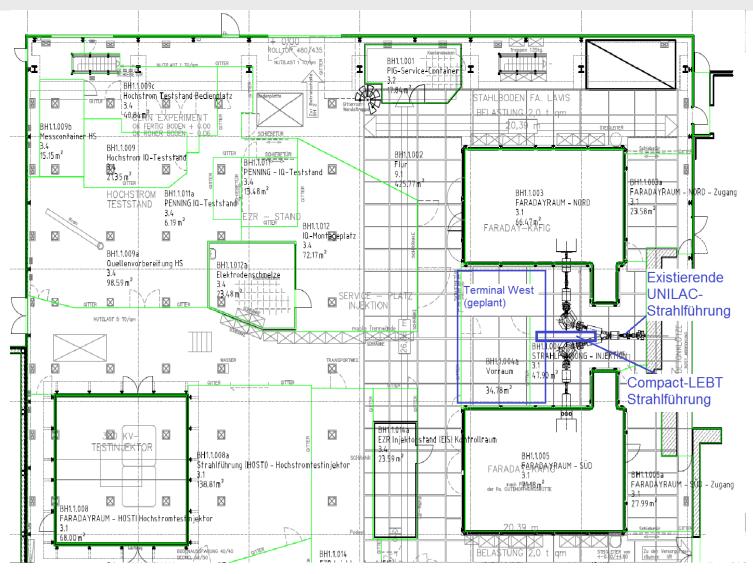
MSC NOT LIABLE FOR DAMAGE OR LOSS OF CUSTOMER SUPPLIED MATERA

INVOICE - 100% UPON COMPLETION

TERMS - NET 30 DAYS, 1.5% INTEREST ON BALANCES OVER 30 DAYS PAST DUE

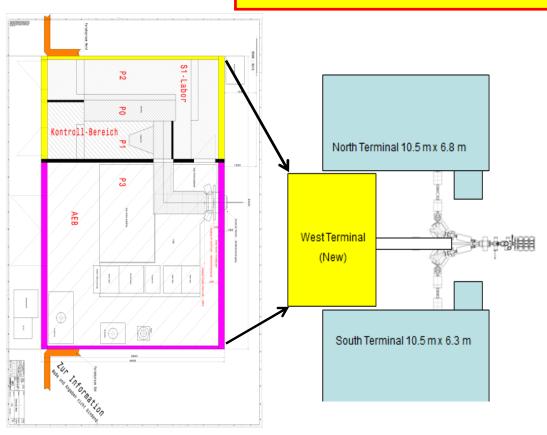
PRICES VALID FOR 30 DAYS UNLESS OTHERWISE SPECIFIED.

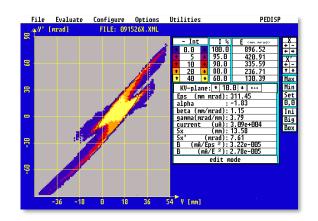
DELIVERY IS 8 WEEKS AFTER RECEIPT OF A PURCHASE ORDER


THANK YOU FOR THE OPPORTUNITY TO PROVIDE A QUOTATION FOR THIS WORK. PLEASE CONTACT US IF WE MAY BE OF FURTHER ASSISTANCE.

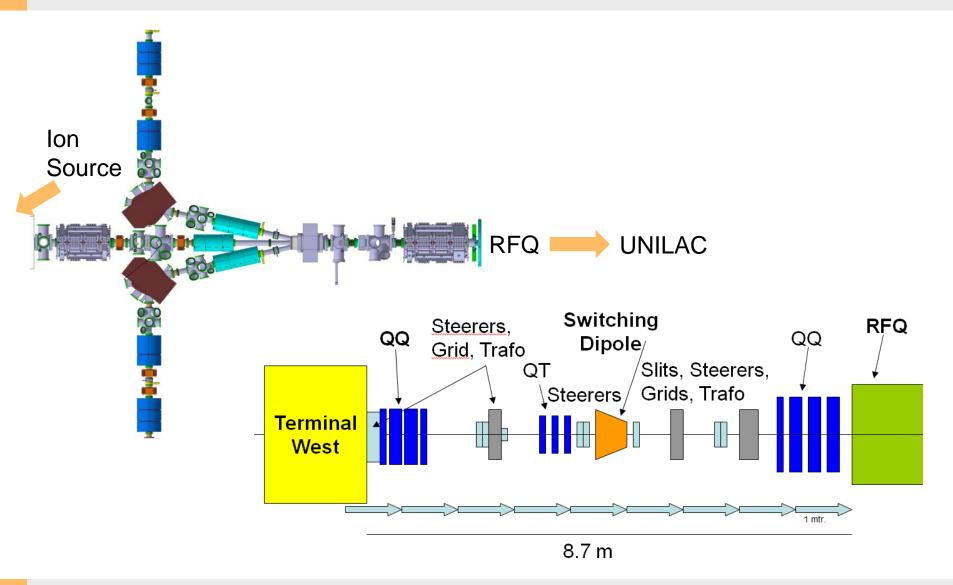
Postfach 11 09 - 91001 Erlangen - Germany - Hausadresse: Paul-Gossen Straße 100 - 91052 Erlangen - Telefon +49 9131 900-0 Vorsitzender des Aufsichtsrats: Frédéric Letlèwe – Geschäftsführer: Carsten Haferkamp
Sitz der Gesellschaft. Erlangen - Registergericht: Fürth, HRB 15957 - Umsntzsteuer-ID: DE 310766750 – www.framatome.com

Terminal West & Compact LEBT: PRIDE



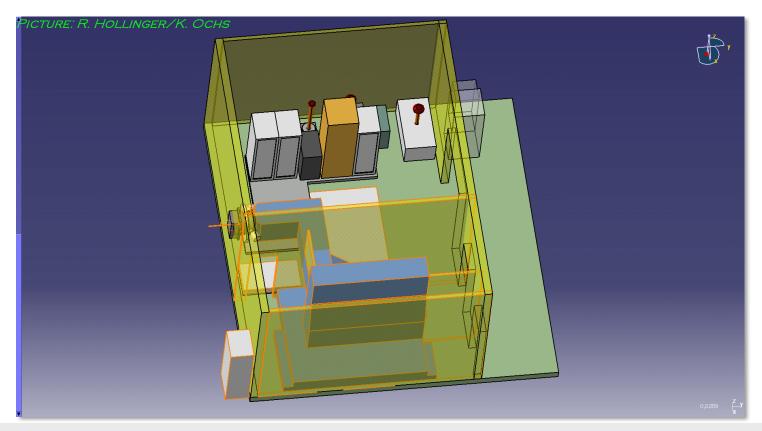

Terminal West

FAIR requirements: 25 mA inside 250π mm mrad

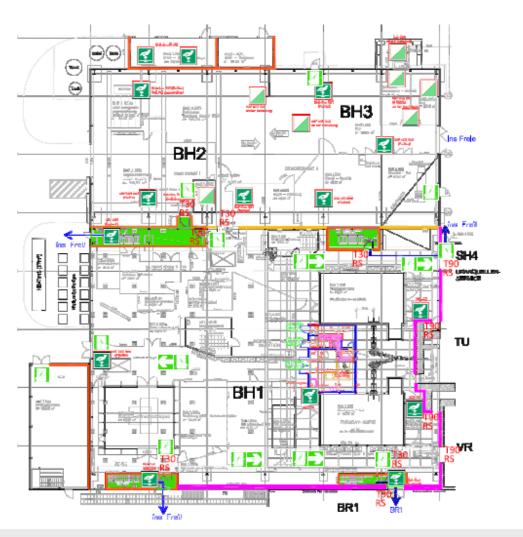


- New uranium Injector for VARIS ion sources between existing Terminals
- Included control area for ion source service and operation
- Straight beamline without charge state separation
- LEBT design with QT, QQ, steerers,

Terminal West (LEBT)



Terminal West


- Dedicated Terminal exclusively for uranium beam
- General layout exists (IOS)
- Integrated service area
- All power supplies integrated in the Faraday room (except high voltage)
- No extension within the basement, only ground floor (plus lifting platform)

Terminal West

Fire protection issus

DAS INGENIEURBÜRO FÜR BAULICHEN BRANDSCHUTZ GBR Dipl.- Ing. Franz Hoffmann / Dipl.-Ing. Katrin Hoffmann

- Von der Obersten Bauaufsicht Rheinland-Pfalz anerkannter Pr

üfsachverständiger f

ür Brandschutz
 - Von der Architektenkammer Hessen anerkannte Pr

üfsachverständige f

ür Brandschutz gem. HPPVO

Aktenzeichen	Index	Datum	Bearbeitung durch	
25-23/10	A	29.01.2018	Hoffmann (kh-dg)	
	В	03.06.2018	Hoffmann (kh)	
	С	01.10.2018	Hoffmann (kh)	

Brandschutzkonzept für die Bestandsgebäude BH 1 + BH 2 + BH 3

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Planckstraße 1 64291 Darmstadt

Projekt: GSI Helmholtzzentrum für Schwerionenforschung GmbH

Brandschutzkonzept für die Bestandsgebäude BH1 + BH2 + BH3 Baumaßnahme

Grundstück: Planckstraße 1 64291 Darmstadt

GSI Helmholtzzentrum für Schwerionenforschung GmbH Bauherr:

Standort Wixhausen Planckstraße 1 64291 Darmstadt

Entwurfsverfasser:

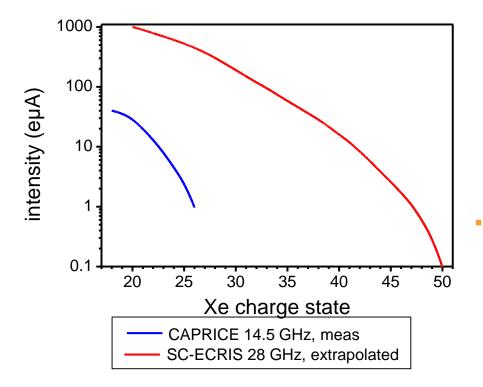
Genehmigungsbehörde: Der Magistrat der Stadt Darmstadt

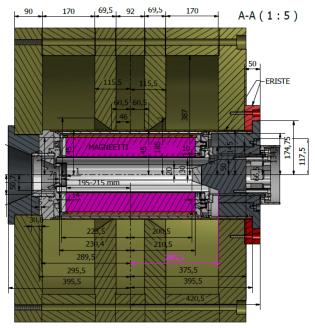
Dipl.-Ing. Katrin Hoffmann Dipl.-Ing. Franz Hoffmann

Uhlandstraße 16 65189 Wiesbaden Fröhnstraße 2 66954 Pirmasens Tel. 0611 / 157 55 870 Tel.: 06331 / 22 88 11 Fax 0611 / 157 55 871 Fax: 06331 / 22 88 14

BANKVERBINDUNG

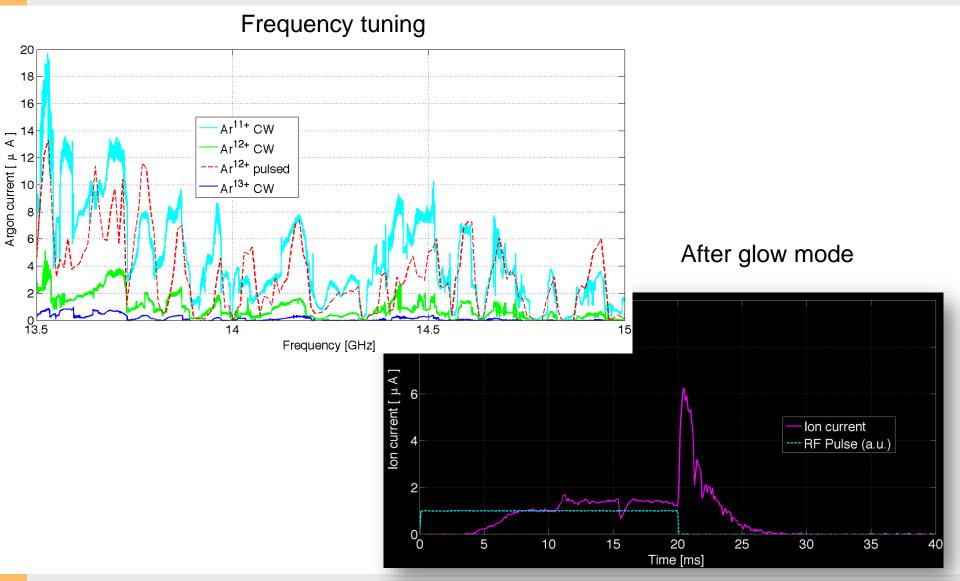
Volksbank Kur- und Rheinpfalz Speyer IBAN: DE1754790000000178659 BIC: GENODE61SPE USt-IdNr.: DE151133098 St. Nr. 040 828 30213


18 GHz ECR


Higher intensity in higher charge states

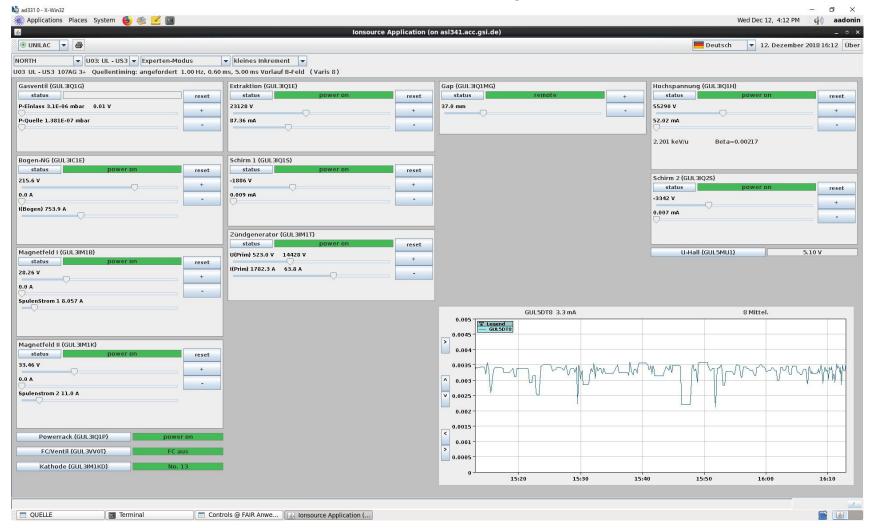
Semiempirical scaling law: I(A^{q+}) ~ ω_{ECR}²

- \rightarrow increase of microwave frequency: $\omega_{RF} = \omega_{ECR} \sim B$
- → higher magnetic flux density


HIISI (University of Jyväskylä)

Available charge states and intensities increase with operating frequency (e. g. $14 \rightarrow 18 \rightarrow 28$ GHz) e. g. Xe^{20+} 25 μ A – CAPRICE@14.5GHz \rightarrow 200 μ A – PKISIS@18GHz = factor 8 and Xe^{27+} 80 μ A – PKISIS@18GHz \rightarrow 800 μ A – SECRAL@28GHz = factor 10

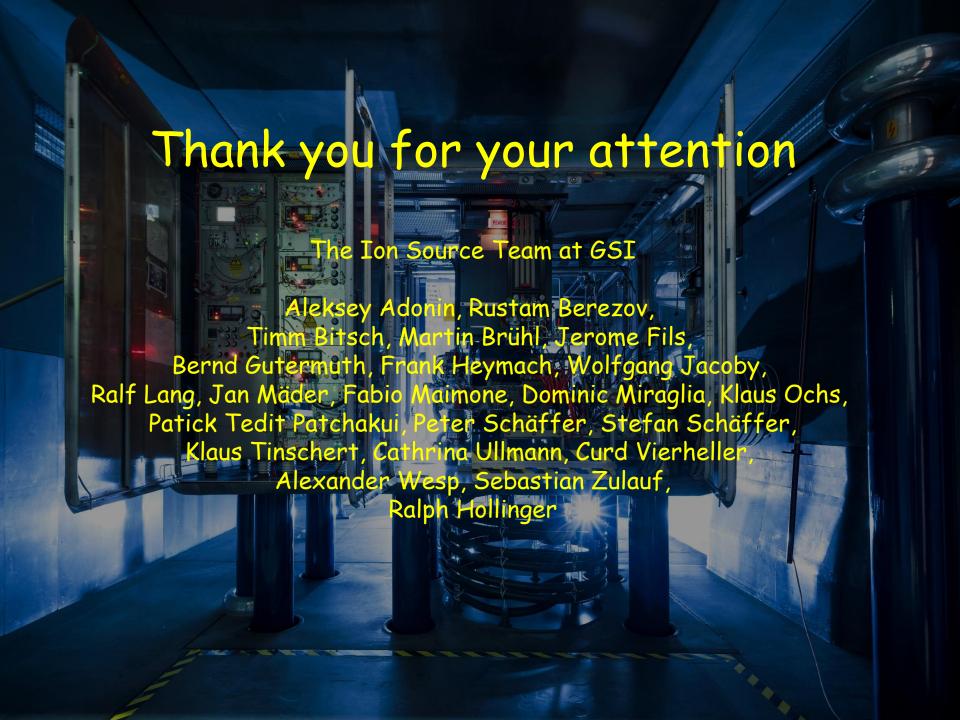
ECR topics



New Ion Source Program...

...we are working on

Savety Topics and more



Glove box for service of heavy metal ion sources

Electrode melting area for PIG and VARIS

