
LMD Tracking &
Alignment in FairRoot

Stefan Pflüger

LMD Geometry
& HVMAP Sensors

Used for PandaRoot simulations and
reconstruction

Notes:
● Construction of the geometry was

completely renewed and improved
● Unfortunately: The tracking

performance plots of this talk use an
older geometry
(results are similar though)

Current Lmd Detector Geometry

Overview of Lmd detector geometry:
(figure shows only lower half)

● steel box + reinforcements
● beam pipe + flanges + transition cone (red cone)
● detector planes (alltogether 4)

possible todos (currently we believe they are negligible):
● use a realistic vacuum in the steel box
● add more steel reinforcements and cooling

equipment

A Lmd Detector Half Plane

front view of an lmd detector half plane rear view of half plane

aluminum cooling support

CVD-diamond support
HV-MAP sensors
(2x5 per module)

electronics board

Track
Reconstruction

Input: Lmd detector digis (event based)

Output/Goal: Lmd track parameters

Notes:
● Fairroot/Pandaroot can simulate

input (using Geant+ROOT)
● Performance results are using and

older geometry

Track Reconstruction Steps

1. Hit Reconstruction
○ convert digi info to

3D point
○ hit clustering
○ optional: merging hits from

different sides of modules

Track Reconstruction Steps

1. Hit Reconstruction

2. Track Search
○ find hits that make a

meaningful track candidate
○ two methods available:

cellular automaton (CA)
track following

Track Reconstruction Steps

1. Hit Reconstruction

2. Track Search

3. Track Fit
○ fit track candidate to obtain

precise track parameters +
errors

○ using broken line model 1

1)Lutz, G., “Optimum Track Fitting in the Presence of Multiple Scattering”
 Nucl.Instrum.Meth.A273 (1988)

Track Reconstruction Steps

1. Hit Reconstruction

2. Track Search

3. Track Fit

4. Track Filtering (1st)
○ filter out “good” tracks

based on characteristic
track parameters

○ using multivariate analysis
(MVA)

Track Reconstruction Steps

1. Hit Reconstruction

2. Track Search

3. Track Fit

4. Track Filtering (1st)

5. IP Backtracking
○ propagate tracks to IP

(necessary for luminosity
determination)

○ using Geane (Geant3) and
point of closest approach
(PCA) to IP

Track Reconstruction Steps

1. Hit Reconstruction

2. Track Search

3. Track Fit

4. Track Filtering (1st)

5. IP Backtracking

6. Track Filtering (2nd)
○ filter out “good” tracks

mainly based on track
position info

○ deviation for background
tracks, due to “wrong”
momentum assumption

Track Parameter Resolutions

● track parameters at first LMD plane
● broken line fit is better at low

momenta
(multiple scattering)

●

Broken Line Fit: Track Parameter Pulls

superior error estimation
(compared to simple straight line fit)

Full Angular Track Efficiency & Resolution

(@ 1.5 GeV/c antiproton beam momentum)

New Alignment
Module
in FairRoot

Current Status:
● done: implementation is complete

● now: performing some last tests

● next: pull request

Under development!

FairRoot pull request

coming soon!

FairROOT alignment module

● all FAIR experiments get mis-/alignment

features out of the box

● extremely simple to use (see example)

● use is optional (no modifications in macros

necessary)

● two misalignment possibilities:
○ geometry modification:

Pros: correct material budget + no fake
induced hits
Cons: volume clashes may appear
-> shadows (hits not reconstructed)

FairROOT alignment module

● all FAIR experiments get mis-/alignment

features out of the box

● extremely simple to use (see example)

● use is optional (no modifications in macros

necessary)

● two misalignment possibilities
○ geometry modification
○ hit transformation:

Pros: no simulation required (fast) + no
shadows from volume clashes
Cons: “fake” hits are reconstructed
(individual detector groups have to filter
out “fake” hits)

Example: Reco Macro

….
FairRunAna *fRun = new FairRunAna();
….

std::map<std::string, TGeoHMatrix> misalign_matrices = getMatrices();

bool invert_matrices(true);
fRun->AddAlignmentMatrices(misalign_matrices, invert_matrices);

std::map<std::string, TGeoHMatrix> align_matrices = getMatrices();
fRun->AddAlignmentMatrices(align_matrices);
....
fRun->Init();
….

IMPORTANT: the alignment module calls have to be
made before fRun->Init();

getMatrices(): dummy code for getting matrices.
Currently LMD group generates these matrices
separately. It is foreseen to have misalignment
generating functionality in the alignment module

For misalignment via hit transformation , the
inverse matrices have to be applied
(only used for misaligment studies)

Alignment matrices can also be stacked on top!
(for misalignment studies and alignment @ PANDA
runtime)

The End
Thanks for your attention!

