
Particle Tracking with Deep Neural Networks at
PANDA

Adeel Akram

Uppsala University
adeel.akram@physics.uu.se

PANDA Tracking Workshop
GSI Darmstadt

September 18, 2018

Adeel Akram (Uppsala U) TrackNET September 18, 2018 1 / 23

Outline

Conventional tracking approach
Motivation for new methods
Intro to Machine Learning
Data Preprocessing
Model Deployment
Further Investigation
Next Steps

Adeel Akram (Uppsala U) TrackNET September 18, 2018 2 / 23

Track Reconstruction

Common approach in High Energy Physics:

Track finding
- Input: Particle Hits
- Algorithm: e.g. SttCellTrackFinder, Hough Transform etc.
- Output: Track Candidates

Track fitting
- Input: Track Candidates
- Algorithm: e.g. Riemann Fit, Helix Fit etc.
- Output: Track Kinematics

Adeel Akram (Uppsala U) TrackNET September 18, 2018 3 / 23

Track Reconstruction

Conventional tracking methods suffer one/more of the following issues.

Rely on linear dynamic models
Are serial in nature
Scale badly with track multiplicity
Consume huge computing resources

An alternate approach is using Machine Learning (ML) methods.
Track finding (pattern recognition)
Track fitting (kinematics)

Adeel Akram (Uppsala U) TrackNET September 18, 2018 4 / 23

PANDA Experiment

Adeel Akram (Uppsala U) TrackNET September 18, 2018 5 / 23

Machine Learning

It is the ability of machines to learn complex representations of data
through learning. Learning approaches are;

Supervised Learning
- Regression, Classification, Patteren Recognition

Unsupervised Learning
- Clustering, Density Measurements

Reinforcement Learning
- Robotics etc

Adeel Akram (Uppsala U) TrackNET September 18, 2018 6 / 23

Deep Learning

Deep learning approach is to
introduce multiple hidden layers in
an existing model. Common
network topologies are

Feed-forward Neural Netowks
(DNNs)
Convolutional Neural Networks
(CNNs or ConvNets)
Recurrent Neural Networks
(RNNs) and LTSM

Adeel Akram (Uppsala U) TrackNET September 18, 2018 7 / 23

Feed-forward Topology
Deep Neural Network

Input Layer

 (+10)

 (+5)

Output Layer

1

1112 1314151617181920

23456 78910

2122 2324252627282930

3132 3334353637383940

Adeel Akram (Uppsala U) TrackNET September 18, 2018 8 / 23

Forward Propagation

Mathematics for Neural Nets:

z[l](i) = W [l] x(i) + b[l]

a[l](i) = g[l](z[l](i))

ŷ(i) = a[L](i)

l = 1, 2, ..., L

i = 1, 2, ...,m

l: lth layer
i: ith training example
x: input vector
b: bias vector
W : weight matrix
g: activation function
ŷ: estimate of final layer

Cost Function (J):

J(ŷ, y) = −1/m
m∑
i

[ŷ(i) log(y(i)) + (1− ŷ(i)) log(1− y(i))]

Adeel Akram (Uppsala U) TrackNET September 18, 2018 9 / 23

Back Propagation

After each epoch (≡ 1 execution cycle), error is back propagated using
method of gradient descent. First,

dW [l] =
∂J

∂W [l]

db[l] =
∂J

∂b[l]

Second, update parameters with learning rate ’α’:

W [l] := W [l] − α dW [l]

b[l] := b[l] − α db[l]

Adeel Akram (Uppsala U) TrackNET September 18, 2018 10 / 23

Prediction

Whole execution of a Neural Network is reduced to minimization of
Cost Function (J).

J(ŷ, y)→ 0 given α,W, b

After all epochs, our model is ready to predict using a threshold (τ).

y
(i)
prediction =

{
1, ŷ(i) > τ

0, otherwise

Adeel Akram (Uppsala U) TrackNET September 18, 2018 11 / 23

Flow Diagram

Adeel Akram (Uppsala U) TrackNET September 18, 2018 12 / 23

Data Generation

Data is generated using
PandaROOT
pp̄→ ΛΛ̄→ p̄ π+ + p π−

channel with Pbeam = 7.0 GeV
nEvent = 10, 000 using
"PndEvtGenDirect" generator
Reconstruction is done using
the "idealtracker"
Output patterns (fired tubes)
are then generated for proton
tracks.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 13 / 23

Pattern Generator

A pattern generator class developed in Uppsala.
Currently, avaiable in PandaROOT.
This class is used to extract tube ids associated with a proton
track.
Finally, we should have Input/Output patterns (list of fired tubes)

Adeel Akram (Uppsala U) TrackNET September 18, 2018 14 / 23

Data Import

Numpy Arrays for Vectorization
Numpy Arrays are a requirement for Keras
(TensorFlow) framework too.
Data is imported into Python using uproot
(minimalist ROOT I/O) from Scikit-HEP.
uproot give access to ".root" data as Numpy
Arrays.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 15 / 23

https://github.com/scikit-hep/uproot
http://scikit-hep.org/affiliations.html

Input/Output Patterns

Imported data as pandas DataFrame (STTHitArray isn’t available yet):

sr Input (X) Output (y)

patterns patterns px py pz

1 [STTHitArray] [31 101 104 ... 4493] 0.09237 0.10075 0.07186

2 [STTHitArray] [19 22 102 ... 3648] -0.0895 0.00896 0.02246

3 [STTHitArray] [80 188 302 ... 4173] 0.23895 0.05811 0.32304

...

Our output patterns have differnt sizes (i.e. # of fired tubes), not
suitable for ANNs. Need patterns of fixed size (∼ 4543).

Adeel Akram (Uppsala U) TrackNET September 18, 2018 16 / 23

Resizing Output Patterns

Adeel Akram (Uppsala U) TrackNET September 18, 2018 17 / 23

Train/Test Datasets

After resizing, we have input and output patterns with same fixed size.

As a final step data is divided into train_set (80%) and test_set (20%)
using the Scikit-learn package for machine learning.

As STTHitArray isn’t available in Python, so input patterns are
replaced with output patterns for a self test.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 18 / 23

Model Deployemnet

Adeel Akram (Uppsala U) TrackNET September 18, 2018 19 / 23

Characterizing ANNs

Adeel Akram (Uppsala U) TrackNET September 18, 2018 20 / 23

Final Remarks

Data Generation, Data Import and Data Preprocessing.
A DNN is programmed in Keras (TensorFlow) and executed.
Self-test shows code is "bug-free" and can be reused.
Python and PandaROOT are bridged together using uproot.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 21 / 23

Next Steps

Proper formulation of physics problem is needed (e.g. inclusion of
Momentum Regression, PID etc).
Complete run when STTHitArray is available
Hyperparameter Tuning

Adeel Akram (Uppsala U) TrackNET September 18, 2018 22 / 23

Questions?

Adeel Akram (Uppsala U) TrackNET September 18, 2018 22 / 23

Backup Slides

Adeel Akram (Uppsala U) TrackNET September 18, 2018 22 / 23

Initial Run (Not Accurate)

Adeel Akram (Uppsala U) TrackNET September 18, 2018 22 / 23

Xavier Initialization

Weights and biases are intialized using samples from a truncated
normal distribution centered on µ = 0 with standard deviation:

σ =
2

n[l] + n[l+1]

Where, n denotes the number of nodes in a layer l. Here, n[l] and n[l+1]

are the dimensions of weight matrix (W) for layers l, l + 1.

W ∈ Rn[l+1]×n[l]

Adeel Akram (Uppsala U) TrackNET September 18, 2018 22 / 23

Optimization

We used Mini-batch Gradient Decent (GD) in Keras/TensorFlow
(also Batch & Stochastic GD). In addition, GD is optimized using
Adam optimizer to escape saddle points where GD fails due zero
gradient. Apart from Adam, we can also use

Momentum
RMSprop
AdaGrad
AMSGrad etc.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 22 / 23

Under/Over fitting

Errors in train/test datasets, it can tell whether our model is
under/over (high bias/high variance) fitting our data.

High Bias → under-fitting
High Variance → over-fitting

How to get a Neural Network Model which is "just" right for our
problem?

Ans: Tune the Network.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 22 / 23

Recipe for Investigation

Adeel Akram (Uppsala U) TrackNET September 18, 2018 23 / 23

Improving Neural Networks

Normalization:
Input Data

Hyperparameters:
W, b, α, λ etc.
nodes & layers

Regularization:
L1 or L2

Dropout
Optimization:

Adam

Adeel Akram (Uppsala U) TrackNET September 18, 2018 23 / 23

Regularization

In case our model overfits data (i.e. high variance), we can fix this by
introducing a regularization term (known as L2) in our cost function to
minimize this effect.

J(ŷ, y) = 1/m

m∑
i=1

L(ŷ(i), y(i)) +
λ

2m

L∑
l=1

∥∥∥W [l]
∥∥∥2
F

+
λ

2m
b2

Where, λ is the regularization parameter, index F denotes Frobenius
norm. Other regularization method such as L1 and Dropout (turning
off certain nodes, reducing the model dimensions) also exists.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 23 / 23

Programming Framworks

C++ Environment:
Standard C++/ROOT
TMVA (Toolkit for
Multivariate Analysis)
etc.

Python Environment:
Python 3.0
Numpy for Vectorization
TensorFlow/scikit-learn
etc.

Adeel Akram (Uppsala U) TrackNET September 18, 2018 23 / 23

TrackML Competition 2018

Adeel Akram (Uppsala U) TrackNET September 18, 2018 23 / 23

Additional Resources

Adeel Akram (Uppsala U) TrackNET September 18, 2018 23 / 23

