GEANE

L. Lavezzi
IHEP – INFN, Torino

PANDA Tracking Computing Workshop GSI, 2018-09-18/19

Some definitions

Track description (1)

A track is the set of hits on the measurement planes

Track description (2)

Simplest description **HELIX**

Homogeneous magnetic field, no relevant effect of materials (e.g. in gas)

• xy plane (orthogonal to mag. field): circle with fixed radius of curvature

$$x(s) = x_o + R \left[\cos \left(\Phi_o + \frac{hs \cos \lambda}{R} \right) - \cos \Phi_o \right]$$

$$y(s) = y_o + R \left[\sin \left(\Phi_o + \frac{hs \cos \lambda}{R} \right) - \sin \Phi_o \right]$$

• polar coordinate, along the mag. field, linear with track length

$$z(s) = z_o + s \sin \lambda$$

- but in real experiments:
 - o material effect (multiple scattering)
 - o field non homogeneities
 - o energy loss

Locally it can be described as a piece of helix

Track description (3)

Many track representations

Curvilinear System – SC q/p, λ , ϕ , y_{PERP} , z_{PERP}

Detector System – SD q/p, v', w', v, w

Plane System – SP q/p, y', z', y, z

5

Choose the one which is most suitable!

Detector plane

- real (e.g. a Silicon Detector plane)
- virtual (e.g. built geometrically ad hoc, used for non planar devices, as the STT)
- defined by:
 - o origin
 - o unit vectors spanning the plane
- measurement matrix H

Extrapolation

- Another tracker, matching
- Calorimeter, cluster association
- Kalman filtering

If you want to compare this extrapolation to the measurement on the plane you need to know **how good your extrapolation is**

COVARIANCE MATRIX

You need a track follower

Many applications

- trajectory calculation
 - o simple extrapolation
- tracklet matching
 - o join track elements from different tracks on a defined plane
- vertex optimization
 - o extrapolate tracks to a common vertex
- track fitting
 - o with iterative methods, as Kalman filter

GEANE (1)

GEANE is a so-called track follower

GEANE (1)

GEANE is a so-called track follower

It's like with Google Maps

Then click Enter

...and extrapolate

GEANE (3)

GEANE is a so-called track follower

- Mean values are the same that would be obtained with the Monte Carlo with all the **random processes off**
- No need to re-implement the **geometry**: it uses the same geometry banks of MC
- It takes into account:
 - material effects (multiple scattering, energy loss)
 - magnetic field
 - physics effects (energy loss straggling)
- it uses different reference frames, with the possibility to change among them
- different kinds of propagation are available

GEANE (2)

GEANE is a so-called track follower

• It is **GEANT3** based - the "E" stands for "error"

Simplified GEANT3 tracking algorithms

Error propagation routines from EMC

• It extrapolates the track parameters

MEAN VALUE | COVARIANCE MATRIX

- it is written in FORTRAN
- an interface to the *fairroot* VMC was implemented to make it available to FAIR experiments, particularly PANDA

Interface Structure

FairGeane

actual GEANE task reads the files with cuts and model information

FairGeanePro contains all the propagation stuff

FairTrackPar FairTrackParP FairTrackParH

track representation in GEANE

FairGeaneUtil

translation to C++ of the FORTRAN routines to perform the frame transformations from/to MARS, SC, SD, SP

Track Representation

The track parameters base class is FairTrackPar

ctor

FairTrackPar(Double t x, Double t y, Double t z, Double t fx, Double t fy, Double t fz, Int t q);

FairTrackParH

INPUT

Track parameters + particle charge MARS or local frame

You may want to propagate:

- to a defined plane
- to a defined volume
- to a defined track length
- to the point of closest approach

You may want to propagate:

- to a defined plane
- to a defined volume
- to a defined track length
- to the point of closest approach

ALREADY IN ORIGINAL GEANE

SPECIFIC FOR PANDA CASE

- Point of closest approach to a point(e.g. 3D point from a tracker or vertex)
- Point of closest approach **to a line** (*e.g.* wire of the STT or the beam)

You may want to propagate:

- to a defined plane
- to a defined volume
- to a defined track length
- to the point of closest approach

You may want to propagate:

- forward
- backward

You may want to propagate:

- to a defined plane
- to a defined volume
- to a defined track length
- to the point of closest approach

You may want to propagate:

- forward
- backward

In both cases the error increases since you infer the final point

Application: Kalman filter

R. E. Kalman, MIT engineer, proposed this method in 1961 in the framework of the control and optimization theory of systems

Almost 30 years

R. Fruehwirth, in 1987, applied the method as a useful track fitting technique in particle physics

Kalman filters were applied to the navigation system during the **Apollo** program and on the **Space Shuttle**, moreover they were used for submarines, unmanned aerospace vehicles and weapons (*e.g.* cruise missiles).

minimization of the following χ^2 , in 5-dimensional space

$$\chi^{2}(f) = (x - f) V (x - f) + (e - f) W (e - f)$$

minimization of the following χ^2 , in 5-dimensional space

$$\chi^{2}(f) = (x - f) V (x - f) + (e - f) W (e - f)$$

 X_i = measurement

 $\mathbf{e_i} = \text{extrapolation}$

minimization of the following χ^2 , in 5-dimensional space

$$\chi^{2}(\mathbf{f}) = (\mathbf{x} - \mathbf{f}) \mathbf{V} (\mathbf{x} - \mathbf{f}) + (\mathbf{e} - \mathbf{f}) \mathbf{W} (\mathbf{e} - \mathbf{f})$$

detector planes

i-th detector plane

following detector planes

 X_i = measurement

 $e_i = extrapolation$

 $k_i = filtered$

minimization of the following χ^2 , in 5-dimensional space

$$\chi^{2}(f) = (x - f) V (x - f) + (e - f) W (e - f)$$

It can be seen as composed by three steps

PREDICTION

$$egin{aligned} oldsymbol{e}_i &\equiv & oldsymbol{e}_i(oldsymbol{k}_{i-1}) = oldsymbol{G}(oldsymbol{k}_{i-1}) &= & oldsymbol{T}(l_i, l_{i-1}) oldsymbol{\sigma}^2[oldsymbol{k}_{i-1}] oldsymbol{T}^T(l_i, l_{i-1}) + oldsymbol{W}_{i-1,i}^{-1} \end{aligned}$$

FILTERING

$$egin{array}{lll} oldsymbol{k}_i &=& oldsymbol{\sigma}^2[oldsymbol{k}_i] \left(oldsymbol{\sigma}^{-2}[oldsymbol{e}_i] oldsymbol{e}_i^{-2}[oldsymbol{e}_i] + oldsymbol{V}_i
ight) \ oldsymbol{\sigma}^{-2}[oldsymbol{k}_i] &=& oldsymbol{\sigma}^{-2}[oldsymbol{e}_i] + oldsymbol{V}_i \end{array}$$

SMOOTHING

$$egin{array}{lll} oldsymbol{f}_i &=& oldsymbol{k}_i + oldsymbol{A}_i \left(oldsymbol{f}_{i+1} - oldsymbol{e}_{i+1}
ight) \ oldsymbol{\sigma}^2[oldsymbol{f}_i] &=& oldsymbol{\sigma}^2[oldsymbol{k}_i] + oldsymbol{A}_i \left(oldsymbol{\sigma}^2[f_{i+1}] - oldsymbol{\sigma}^2[oldsymbol{e}_{i+1}]
ight) oldsymbol{A}_i^T \ oldsymbol{A}_i &=& oldsymbol{\sigma}^2[oldsymbol{k}_i] oldsymbol{T}^T(l_{i+1}, l_i) oldsymbol{\sigma}^{-2}[oldsymbol{e}_{i+1}] \end{array}$$

It can be seen as composed by three steps

 $= (\circ_i, \circ_{i-1}) \circ (\circ_{i-1}) = (\circ_i, \circ_{i-1}) +$

GEANE

FILTERING

WEIGHTED AVERAGE

 $[\mathbf{n}_i]$ - \mathbf{o} $[\mathbf{c}_i]$ + \mathbf{v}_i

SMOOTHING

$$\boldsymbol{f}_i = \boldsymbol{k}_i + \boldsymbol{A}_i \left(\boldsymbol{f}_{i+1} - \boldsymbol{e}_{i+1} \right)$$

BACKTRACKING

$$m{A}_i = m{\sigma}^2[m{k}_i] \, m{T}^T(l_{i+1}, l_i) \, m{\sigma}^{-2}[m{e}_{i+1}]$$

 $r^2[e_i]$ GEANE

Error extrapolation

PREDICTION

$$egin{array}{lll} m{e}_i &\equiv & m{e}_i(m{k}_{i-1}) = m{G}(m{k}_{i-1}) \ m{\sigma}^2[m{e}_i] &= & m{T}(l_i, l_{i-1}) \, m{\sigma}^2[m{k}_{i-1}] \, m{T}^T(l_i, l_{i-1}) \ m{W}_{i-1, i}^{-1} \end{array}$$

TRANSPORT

RANDOM

- the extrapolated covariance is composed by:
 - o the error computed so far, transported on i-th plane
 - o a random part during extrapolation, due to multiple scattering and energy loss
- the **transport matrix** (a.k.a. **Jacobian**) contains different contributions:

$$T_{ij}(l, l_0) = \frac{\partial e^i(l)}{\partial e^j(l_0)}$$
 $\mathbf{T} = \mathbf{I} + \mathbf{A}_{\mathbf{x}+\mathbf{dx}} + \mathbf{B}_{\mathbf{x}+\mathbf{dx}} \cdot \mathbf{dx}$

Transport matrix (1)

Transport matrix (2)

contribution of the error on the direction (also in absence of magnetic field)

$$\mathbf{A} = \begin{pmatrix} \frac{\left(\frac{\partial^2 \frac{1}{p}}{\partial \mathbf{l}^2}\right)}{\left(\frac{\partial \frac{1}{p}}{\partial \mathbf{l}}\right)} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \frac{\left(\frac{\partial \frac{1}{p}}{\partial \mathbf{l}}\right)}{\partial \mathbf{l}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{cos}\lambda & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Transport matrix (3)

$$T = I + (A_{x+dx} + B_{x+dx}) \cdot dx$$

contribution due to the magnetic field

$$B = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ H_2 & 0 & -\frac{H_0}{p} & \frac{H_2H_3}{p^2} & -\frac{H_2^2}{p^2} \\ -\frac{H_3}{cos\lambda} & \frac{H_0}{pcos^2\lambda} & \frac{H_2tan\lambda}{p} & -\frac{H_3^2}{p^2cos\lambda} & -\frac{H_2H_3}{p^2cos\lambda} \\ 0 & 0 & 0 & 0 & -\frac{H_3tan\lambda}{p} \\ 0 & 0 & 0 & \frac{H_3tan\lambda}{p} & 0 \end{pmatrix}$$

Random Matrix

$$egin{array}{lll} m{e}_i &\equiv & m{e}_i(m{k}_{i-1}) = m{G}(m{k}_{i-1}) \ m{\sigma}^2[m{e}_i] &= & m{T}(l_i, l_{i-1}) \, m{\sigma}^2[m{k}_{i-1}] \, m{T}^T(l_i, l_{i-1}) + m{W}_{i-1, i}^{-1} \end{array}$$

TRANSPORT

RANDOM

- multiple scattering
- energy loss

Coulomb multiple scattering

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & <\theta_p^2> & 0 & 0 & -\frac{<\theta_p^2>dl}{2} \\
0 & 0 & \frac{<\theta_p^2>}{\cos^2\lambda} & \frac{<\theta_p^2>dl}{(2\cos\lambda)} & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & \frac{<\theta_p^2>dl}{(2\cos\lambda)} & \frac{<\theta_p^2>(dl)^2}{3} \\
0 & -\frac{<\theta_p^2>dl}{2} & 0 & 0 & \frac{<\theta_p^2>(dl)^2}{3}
\end{pmatrix}$$

Was specifically updated in GEANE for PANDA

What about the fluctuations?

Was specifically updated in GEANE for PANDA

What about the fluctuations?

They depend on:
$$\kappa = \frac{\xi}{E_{\text{max}}}$$

$$\xi = 153.4 \frac{z^2 Z}{\beta^2 A} \rho d \quad (\text{keV})$$

$$E_{\text{max}} = \frac{2m_e \beta^2 \gamma^2}{1 + 2\gamma m_e / m + (m_e / m)^2}$$

strong dependence on the absorber thickness

Was specifically updated in GEANE for PANDA

Dependence on k:

1.
$$k > 10$$
 – Gaussian

2.
$$0.01 < k < 10 - Vavilov$$

THIN ABSORBERS

3.
$$k < 0.01 \& Ncoll > 50 - Landau$$

4. k < 0.01 & Ncoll < 50 - sub-Landau region

$$\sigma^2(1/p) = \frac{E^2}{p^6} \sigma^2(E)$$

What happens if the variance is **infinite**?

Was specifically updated in GEANE for PANDA

Dependence on k:

1.
$$k > 10$$
 – Gaussian

2.
$$0.01 < k < 10 - Vavilov$$

THIN ABSORBERS

3.
$$k < 0.01 \& Ncoll > 50 - Landau$$

4. k < 0.01 & Ncoll < 50 - sub-Landau region

$$\sigma^2(1/p) = \frac{E^2}{p^6} \sigma^2(E)$$

What happens if the variance is **infinite**?

Truncaded Landau or Urban (for very thin absorbers)

Was specifically updated in GEANE for PANDA

Figure 10: Pull distribution $\Delta(1/p)/\sigma$ for 1 GeV muons after passing through the PANDA straw tube detector. Left: Standard GEANE result (RMS \simeq 0.3 in the displayed window); right: result after the modification with $\alpha=0.995$ (see the text). The region between the vertical lines has RMS= 1.03.

...moreover

GEANE in GENFIT1

GENFIT class structure

Kalman fit package in *pandaroot*: **GENFIT**

GEANE in GENFIT1

GENFIT class structure

Kalman fit package in *pandaroot*: **GENFIT**

GEANE in GENFIT1

- the filtering is always performed on **planes**
- the extrapolation is **not visible** to the user, but GEANE is called inside the propagation stage
- first implementation of smoothing: backtracking
- Kalman filter back and forth for *n* iterations to refine the results
- alternative to GEANE: RKTrackRep

The heir: GEANT4E

like father like son

GEANT4E:

Error propagation for track reconstruction inside the GEANT4 framework

Pedro Arce (CIEMAT)

CHEP 2006, Mumbai, 13-17th February 2006

Geant4 Error Propagation in CMS Track Reconstruction

LPCC Detector Simulation Workshop, CERN, 18-19 March 2014

Thomas Hauth [CERN]

Geant4e Track Extrapolation in the Belle II Experiment

Leo Piilonen, Virginia Tech on behalf of the Belle II Collaboration

DPF 2017 Fermilab August 2017

Some References

geane

- V. Innocente, M. Maire and E. Nagy, GEANE : Average Tracking and Error propagation package, CERN Program Library W5013-E (1991)
- W. Wittek, EMC Collaboration reports, EMC/80/15, EMC/CSW/80/39, 81/13, 81/19, unpublished
- A. Strandlie and W. Wittek, *Propagation of covariance matrices of track parameters in homogenenous magnetic fields in CMS*, CMS 2006/001

Interface to *fair/pandaroot*

- A. Fontana et al., Use of GEANE for tracking in Virtual Monte Carlo, Journ. of Phys.: Conf. Series, 119 (2008) 032018
- http://panda-wiki.gsi.de/cgi-bin/view/Computing/GeaneInterface

genfit

• C. Hoeppner et al., A novel generic framework for track fitting in complex detector systems, NIM **A620** (2010), 518-525

Thank you! Grazie!