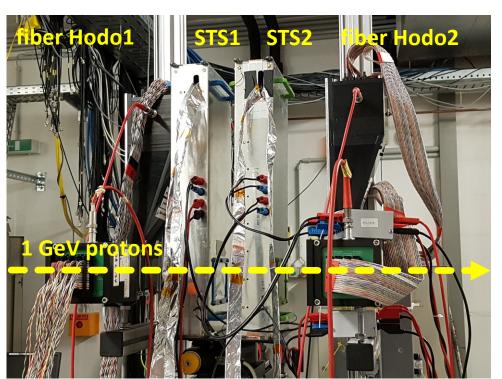
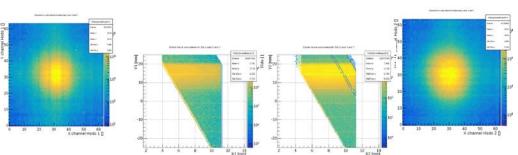
CBM + HADES detector tests at COSY in Q1/2018, and outlook to Q1/2019

Johann M. Heuser

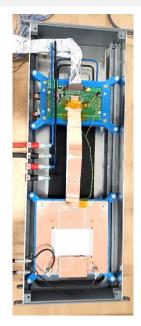
GSI Helmholtz Center for Heavy Ion Research GmbH,
Darmstadt, Germany

8th COSY Beamtime Advisory Committee Meeting, IKP FZ Jülich, 2 July 2018




Beamtime in calendar week #9 (26.2. - 5.3.) 2018

- with set-up of equipment in the preceding MD week
- JESSICA cave, protons of E_{kin} = 1 GeV
- detectors tested:
 - CBM-STS:
 - prototype modules with near-final integration of sensor, microcable, read-out ASIC
 - relevance for Sensor Production Readiness Review in April 2018
 - CBM-MUCH:
 - had to be cancelled due to travel clearance issue of the VECC team
 - HADES/CBM Start-Veto:
 - first test of Ultra-Fast Silicon Detectors


Outlook: further component tests considered in Q1/2019

(1) CBM Silicon Tracking System

prototype STS module

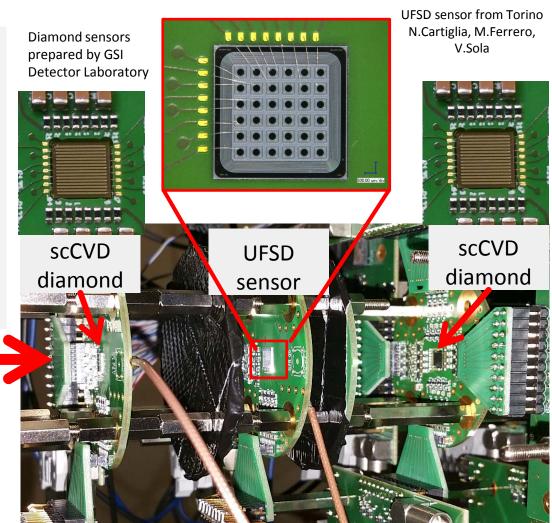
read out with prototype free-streaming DAQ system

STS-XYTERv2.0 on FEB-B

microcables

silicon microstrip sensor

- 285 μm thick
- strips 4 cm long
- 2-sided, 7.5 deg stereo angle
- 128 channels/side read out
- \rightarrow triangular overlap area


preliminary results:

- o noise: 1090 ±150 e (n)
 - 1350 ±200 e (p)
- o signal mean: 16720 e (n) 20300 e (p)
- o read-out threshold: 7000 e
- o signal-to-noise: 15±3
- hit detectionefficiency: > 95%

(2) Ultra-Fast Silicon Detectors for the HADES/CBM Start-Veto System

First test with 1 GeV proton beam @ COSY

- A beam telescope made of 3 sensors:
 - Two double-sided scCVD diamond sensors
 - One UFSD with pad readout in between
 - time precision and efficiency determination
- Data analysis in progress
- Expected time precision below 100 ps and high rate capability
- Possible PID by ToF and dE/dx

beam direction

Outlook 2019

For further CBM component tests, we consider a further application at CBAC#9:

- beam-time in Q1/2019
- 1 week
- component tests towards their production readiness, including e.g.
 - read-out ASIC STS-XYTERv2.1
 - TRD front-end electronics
 - ...

