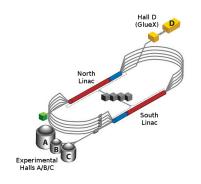
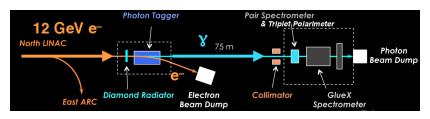
Machine Learning and Precision Analysis at GlueX

Daniel Lersch, Sean Dobbs


Florida State University

12.10.2018

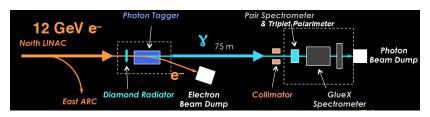
GlueX at Thomas Jefferson National Laboratory


- Over 125 scientists from:
 - 28 Institutions
 - ▶ 10 Countries
- Experiments with polarized photon beam

Physics Program at GlueX:

- Study properties of strong force (Binds quarks into protons, protons-neutrons into nuclei)
- Search for new particles or new particle states
 ⇒ Baryon- /Meson Spectroscopy
- Test fundamental symmetries in physics:
 ⇒ Rare decay modes of the η^(′)-meson

Photo-Production Data


- Photon beam with energies $\in [3 \text{ GeV}, 12 \text{ GeV}]$
- Do not produce just one particle, but a whole bunch of them

3 / 13

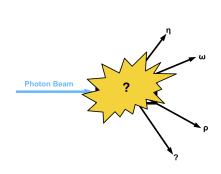
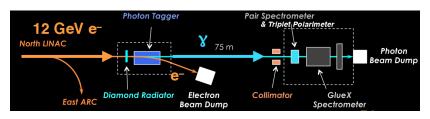
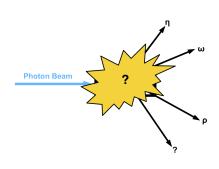
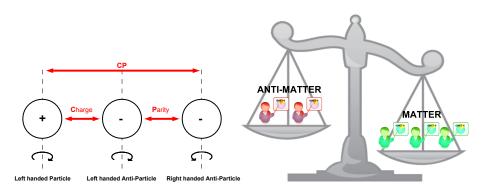

Daniel Lersch (FSU) ISNET-6 12.10.2018

Photo-Production Data

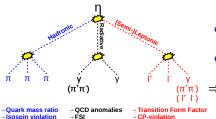


- Photon beam with energies $\in [3 \text{ GeV}, 12 \text{ GeV}]$
- Do not produce just one particle, but a whole bunch of them
- Some production mechanisms are more dominant
- Final states with similar topology, but different particles:

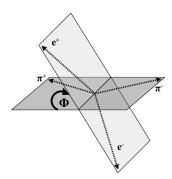

- $\begin{array}{c} \hspace{0.5cm} \rho \to \pi^{+}\pi^{-} \hspace{0.1cm} + \hspace{0.1cm} \text{fake photon} \hspace{0.1cm} \leftrightarrow \\ \hspace{0.1cm} \eta \to \pi^{+}\pi^{-}\gamma \end{array}$
- In general: Pions are dominating


Photo-Production Data

- Photon beam with energies
 ∈ [3 GeV, 12 GeV]
- Do not produce just one particle, but a whole bunch of them
- Some production mechanisms are more dominant
- Need reliable algorithms/methods to:
 - i) Reconstruct the measured data properly (Kalmann-Filter, Clustering,...)
 - ii) Identify particle final states correctly (Kinematic Fitting,...)
 - iii) Figure out what is going on in the yellow area (Partial Wave Analysis,...)


Symmetries and CP-Violation

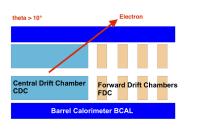
- Symmetries in physics: Charge-, Parity- and Time- conjugation
- CP-Violation is one (of three necessary) condition(s) required to cause an imbalance between matter and anti-matter (A. Sakharov)
- Candidates to study CP-Violation: K^0 -, B^0 and $\eta^{(\prime)}$ -Decays

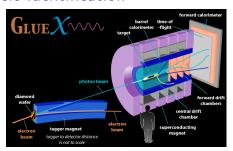

Daniel Lersch (FSU) ISNET-6 12.10.2018 4 / 13

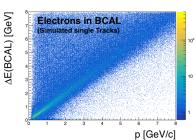
The Anomalous Decay $\eta^{(\prime)} \to \pi^+\pi^-e^+e^-$

- $\bullet \ \eta^{(\prime)}\text{-Mesons}$ are allrounder for interesting physics studies
- Look at decay: $\eta^{(\prime)} \to \pi^+\pi^-e^+e^-$ to study CP-violation:
- \Rightarrow Asymmetry A_{Φ} of angle Φ between $\pi^+\pi^-$ - e^+e^- -decay planes

- Upper limit predicted by theory: $A_{\Phi} \sim 1\%$ D. Gao. *Mod. Phys. Lett.*, A17:1583-1588,(2002)
- Current experimental results: $A_{\Phi} = (-0.6 \pm 2.5_{stat} \pm 1.8_{sys}) \cdot 10^{-2}$ KLOE coll. *Phys. Lett.*, B675:283-288,(2009)
- ⇒ Particle Identification is crucial for precise/sensitive measurement


5 / 13

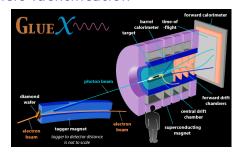

 \Rightarrow Utilize machine learning for classification between π^\pm and e^\pm

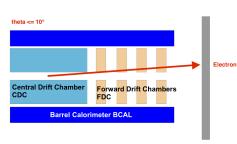

- Reconstruction of charged particles:
 - ► Magnetic field + Drift Chamber
 - Energy deposits in calorimeters
 - ▶ Different detector sub-parts used depending on θ -Angle of particle

Goal(s):

- Reproduce detector response for each particle species
- ii) Use detection pattern for classification

Forward Calorimeter FCAL


ISNET-6


Daniel Lersch (FSU)

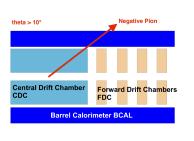
- Reconstruction of charged particles:
 - ► Magnetic field + Drift Chamber
 - Energy deposits in calorimeters
 - ▶ Different detector sub-parts used depending on θ -Angle of particle

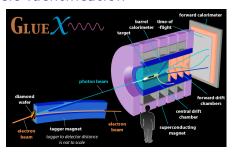
Goal(s):

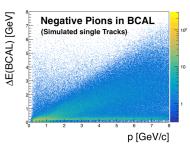
- Reproduce detector response for each particle species
- ii) Use detection pattern for classification

Neb) (AP) (Simulated single Tracks)

p [GeV/c]

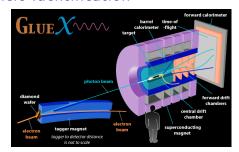

6 / 13

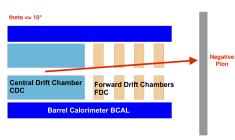

Forward Calorimeter FCAL


- Reconstruction of charged particles:
 - Magnetic field + Drift Chamber
 - ► Energy deposits in calorimeters
 - ▶ Different detector sub-parts used depending on θ -Angle of particle

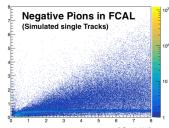
Goal(s):

- Reproduce detector response for each particle species
- ii) Use detection pattern for classification




Forward Calorimeter FCAL

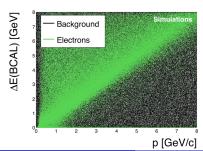
- Reconstruction of charged particles:
 - ► Magnetic field + Drift Chamber
 - Energy deposits in calorimeters
 - ▶ Different detector sub-parts used depending on θ -Angle of particle

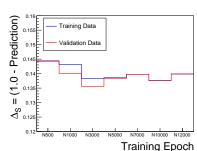

Goal(s):

- Reproduce detector response for each particle species
- ii) Use detection pattern for classification

ΔE(FCAL) [GeV]

Forward Calorimeter FCAL

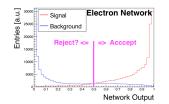

p [GeV/c]

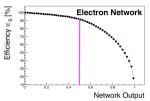

Data Set(s) and Training

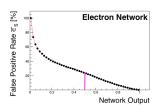
Information used for classification:

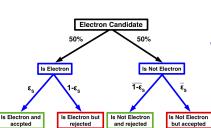
Sub-Detector	Momentum p Angle θ		Energy Deposit ΔE	
CDC	×	X	X	
BCAL	-	-	X	
FDC	x	Х	Х	
FCAL	-	-	×	

- "Classical" Approach: Train a classifier with electrons as signal and pions as background
 ⇒ Not done here
- Trained neural network with simulated single particle tracks (signal) + random flat detector response (background) for: e^+ , e^- , π^+ and $\pi^ \Rightarrow$ One neural network per particle and per charge

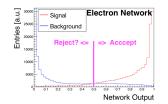


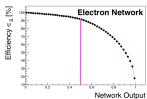


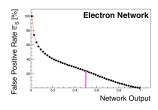

ISNET-6 12.10.2018

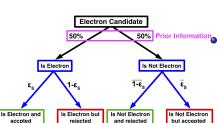

7 / 13

* Inspired by PhD-Thesis from Daniel Coderre (2012)

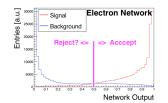


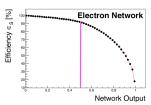


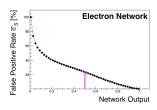

- Instead of network output, use ROC (i.e. efficiency, false identification rate) for classification
- Calculate two probabilities:

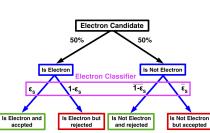

1.
$$P_{e} = \frac{0.5 \times \epsilon_{S}}{0.5 \times \epsilon_{S} + 0.5 \times \bar{\epsilon}_{S}}$$
2.
$$P_{\bar{e}} = \frac{0.5 \times (1 - \bar{\epsilon}_{S})}{0.5 \times (1 - \bar{\epsilon}_{S}) + 0.5 \times (1 - \epsilon_{S})}$$

* Inspired by PhD-Thesis from Daniel Coderre (2012)

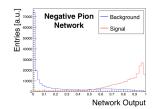


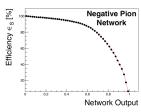

 Instead of network output, use ROC (i.e. efficiency, false identification rate) for classification

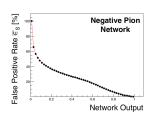

Calculate two probabilities:

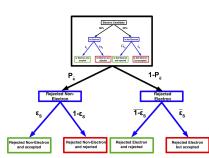

1.
$$P_{e} = \frac{0.5 \times \epsilon_{S}}{0.5 \times \epsilon_{S} + 0.5 \times \bar{\epsilon}_{S}}$$
2.
$$P_{\bar{e}} = \frac{0.5 \times (1 - \bar{\epsilon}_{S})}{0.5 \times (1 - \bar{\epsilon}_{S}) + 0.5 \times (1 - \epsilon_{S})}$$

* Inspired by PhD-Thesis from Daniel Coderre (2012)

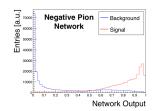


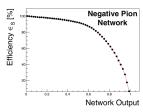


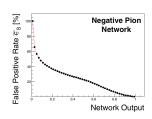

- Instead of network output, use ROC (i.e. efficiency, false identification rate) for classification
- Calculate two probabilities:

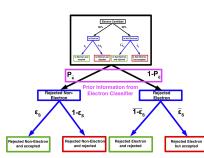

1.
$$P_{e} = \frac{0.5 \times \epsilon_{S}}{0.5 \times \epsilon_{S} + 0.5 \times \overline{\epsilon}_{S}}$$
2.
$$P_{\tilde{e}} = \frac{0.5 \times (1 - \overline{\epsilon}_{S})}{0.5 \times (1 - \overline{\epsilon}_{S}) + 0.5 \times (1 - \epsilon_{S})}$$

* Inspired by PhD-Thesis from Daniel Coderre (2012)

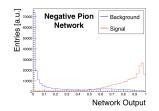


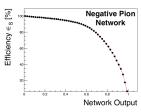

- Instead of network output, use ROC (i.e. efficiency, false identification rate) for classification
- Calculate two probabilities:
 - 1. $P_{\bar{e}} = f(Electron Network)$

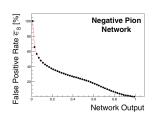

2.
$$P_{\pi} = \frac{P_{\bar{e}} \times \epsilon_{S}}{P_{\bar{e}} \times \epsilon_{S} + (1 - P_{\bar{e}}) \times \bar{\epsilon}_{S}}$$

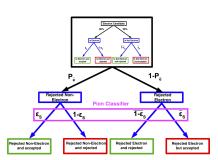

• $P_{\bar{e}}$ serves as prior probability for the pion-hypothesis

* Inspired by PhD-Thesis from Daniel Coderre (2012)

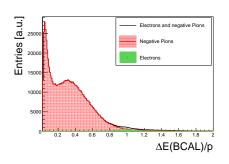


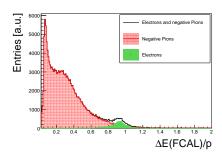

- Instead of network output, use ROC (i.e. efficiency, false identification rate) for classification
- Calculate two probabilities:
 - 1. $P_{\bar{e}} = f(Electron Network)$


2.
$$P_{\pi} = \frac{P_{\bar{e}} \times \epsilon_{S}}{P_{\bar{e}} \times \epsilon_{S} + (1 - P_{\bar{e}}) \times \bar{\epsilon}_{S}}$$


• $P_{\bar{e}}$ serves as prior probability for the pion-hypothesis

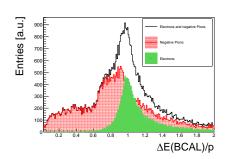
* Inspired by PhD-Thesis from Daniel Coderre (2012)

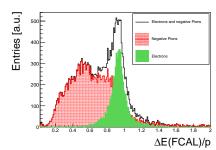



- Instead of network output, use ROC (i.e. efficiency, false identification rate) for classification
- Calculate two probabilities:
 - 1. $P_{\bar{e}} = f(Electron Network)$

2.
$$P_{\pi} = \frac{P_{\bar{e}} \times \epsilon_{S}}{P_{\bar{e}} \times \epsilon_{S} + (1 - P_{\bar{e}}) \times \bar{\epsilon}_{S}}$$

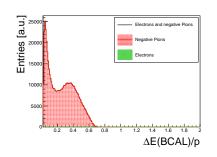
• $P_{\bar{e}}$ serves as prior probability for the pion-hypothesis

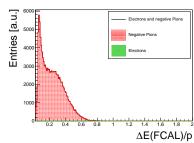

Application and Validation on Simulated single Particles



- ullet Look at data set with simulated single particle tracks and: $N(\pi^\pm) pprox 20 N(e^\pm)$
- Top figures: No particle identification applied
- Signature of electrons: $\Delta E/p \approx 1$

Application and Validation on Simulated single Particles


9 / 13

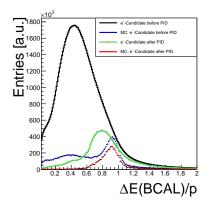

- ullet Look at data set with simulated single particle tracks and: $N(\pi^\pm) pprox 20 N(e^\pm)$
- Top figures: Particle identification applied with: $P_e > P_\pi$

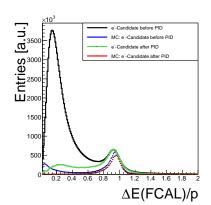
Particle	Acceptance BCAL [%]	Acceptance FCAL [%]
Electron	75	83
Pion	5	12

 \Rightarrow $\sim 80\%$ of Electrons accepted and $\sim 90\%$ of Pions rejected

Application and Validation on Simulated single Particles

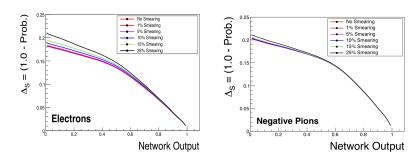
9 / 13


- ullet Look at data set with simulated single particle tracks and: $N(\pi^\pm) pprox 20 N(e^\pm)$
- ullet Top figures: Particle identification applied with: $P_\pi > P_e$


	Particle	Acceptance BCAL [%]	Acceptance FCAL [%]	
Electron		3	8	
	Pion	68	77	

 $\Rightarrow~\sim90\%$ of Electrons rejected and $~\sim70-80\%$ of Pions accepted

Application and Validation in Analysis of $\eta' \to \pi^+\pi^-e^+e^-$ with GlueX-Data


- Apply method on GlueX data from run period 2017 (2018 to come)
- Significant reduction of pion-background, but still noticeable contribution
 ⇒ Room for improvement
- Promising response for FCAL in measured and simulated data

Daniel Lersch (FSU)

First Checks on Reliability and Stability

- Smeared variables in the test data set randomly with a gaussian function: variable \mapsto variable \times Gauss $(1,\delta)$
- Used relative smearing $\delta=1\%$, 5%, 10%, 15% and 20%:

Particle	$>$ 5% effect on $\Delta_{\mathcal{S}}$	Effect on Δ_S for $\delta=25\%$
e^{\pm}	$\delta \gtrsim 15\%$	14%
π^{\pm}	$\delta \geq 25\%$	8%

• Ongoing test: Apply method on "clean" channel: $\rho \to \pi^+\pi^-$ and compare response between data and simulations

Where to go from here (?)

- Used machine learning to reproduce detector response for electrons and pions:
 - i) Combine information from different detector sub-systems
 - ii) Take angular dependency into account
 - ⇒ Preliminary stage for particle track reconstruction (aka tracking)
- Particle Track Reconstruction: Go one step down in information hierarchy
 - ▶ Momentum $p \Leftrightarrow \text{Helix defined by hits in Drift Chamber}$
 - ► Energy deposits ⇔ Group/Cluster of hits in Calorimeter
- ⇒ Extend usage of machine learning towards track reconstruction

Daniel Lersch (FSU) ISNET-6 12.10.2018 12 / 13

Summary and Outlook

Application of machine learning based algorithms for particle identification

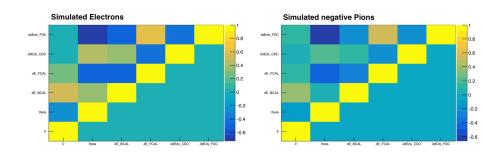
- ☑ Classification between electrons and pions with neural networks and boosted decision tree (latter one not shown today)
 - \Leftrightarrow developed/tested on decay $\eta^{(\prime)}
 ightarrow \pi^+\pi^-e^+e^-$
- First reliability and stability checks
- ☐ Detailed comparison between measured and simulated data (ongoing)
- □ Classification between kaons, pions and protons (ongoing)
 - \Leftrightarrow Include knowledge from e^{\pm}/π^{\pm} classification
- □ Include other algorithms for comparison (SVM, Likelihood,...)
- Use neural networks to identify properly reconstructed photons and reject falsely reconstructed ones (not discussed today)

Explore possible applications for machine learning

- □ Reconstruction of particle tracks (tracking)
- ☐ High level physics analysis

(Final state selection, partial wave analysis,...)

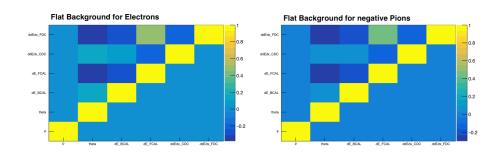
Content


- 1. GlueX at Thomas Jefferson National Laboratory (2)
- 2. Photo-Production Data (3)
- 3. Symmetries and CP-Violation (4)
- 4. The Anomalous Decay $\eta^{(\prime)} \rightarrow \pi^+\pi^-e^+e^-$ (5)
- 5. The GlueX-Detector and Particle Identification (6)
- 6. Data Set(s) and Training (7)
- 7. Using the Classifier-Output (8)
- 8. Application and Validation on Simulated single Particles (9)
- 9. Application and Validation in Analysis of $\eta' \to \pi^+\pi^-e^+e^-$ with GlueX-Data (10)
- 10. First Checks on Reliability and Stability (11)
- 11. Where to go from here (?) (12)
- 12. Summary and Outlook (13)
- 13. Backup Stuff (15)

Daniel Lersch (FSU)

Backup Stuff

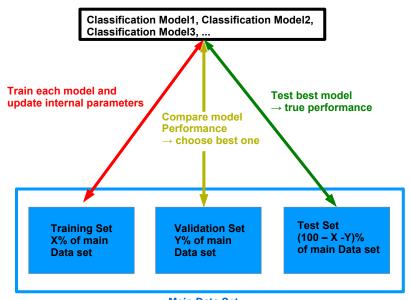
- Contents
- Variable Correlations
- Training, Validation and Testing
- Current Model Selection
- Comparison to Decision Tree (GBT)
- The big Picture
- The Purity
- Combinatorics in Analysis of $\eta^{(\prime)} o \pi^+\pi^-e^+e^-$
- Details on $\eta^{(\prime)} \to \pi^+\pi^-e^+e^-$


Backup: Variable Correlations

- Shown here is the Pearson Correlation Coefficient between the classification variables
- Correlation in flat background data due to detector geometry

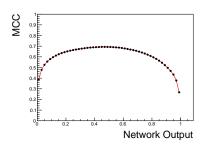
Daniel Lersch (FSU) ISNET-6 12.10.2018 16 / 13

Backup: Variable Correlations

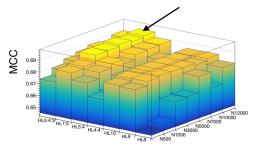


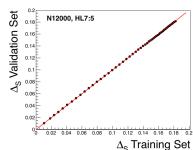
- Shown here is the Pearson Correlation Coefficient between the classification variables
- Correlation in flat background data due to detector geometry

Daniel Lersch (FSU) ISNET-6 12.10.2018

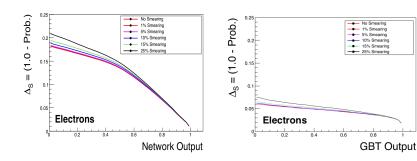

16 / 13

Backup: Training, Validation and Testing




Main Data Set

Backup: Current Model Selection



- Use Mathews Correlation Coefficient: $MCC \equiv \frac{\epsilon_S \times \epsilon_B FPR \times FNR}{\sqrt{\frac{\epsilon_S}{\rho_S} \times \frac{\epsilon_B}{\rho_B}}} \in [-1, 1]$
- Currently (not best practice): Take model with largest MCC on validation data set
- Need to consider "costs": Number of parameters (e.g. training epochs, hidden layers,...)
- Bayesian Optimizer for machine learning algorithms: Spearmint

Backup: Comparison to Decision Tree (GBT)

- Smeared variables in the test data set randomly with a gaussian function: variable \mapsto variable \times Gauss $(1, \delta)$
- Used relative smearing $\delta = 1\%$, 5%, 10%, 15% and 20%:

	Classifier for e^{\pm}	$>$ 5% effect on $\Delta_{\mathcal{S}}$	Effect on $\Delta_{\mathcal{S}}$ for $\delta=25\%$	
	Network	$\delta \gtrsim 10\%$	14%	
GBT		$\delta \gtrsim 10\%$	25%	

25% Smearin

0.8

• GBT is still under investigation: e^{\pm} -acceptance $\sim 8\% - 20\%$

Backup: The big Picture

INPUT

- Decisive Power
- Additional preparation needed ?(e.g. normalisation)
- How strong correlated?
- Use measured data or MC?
- Generality?
- Impact on classifier performance?

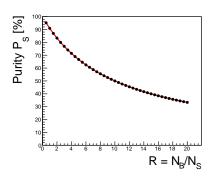
CLASSIFIER

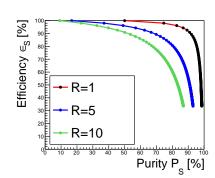
- Which type?
- How to train? - Implementaion?
- Handling?
- Influence on systematics?
- Handling of unknown data?
- Reliability?

OUTPUT

- How used in further Analysis?
- Used at which analysis Stage?
- Assigned error?
- Trustworthy?
- Generality?

- → Calibration
- → Match between data/MC



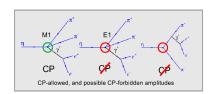

- → Training curve
- → ROC plot
- → Monitoring plots
- → Output variable
- → Use dedicated frameworks
- → Do not reinvent the wheel

- → Systematic studies → Error handling

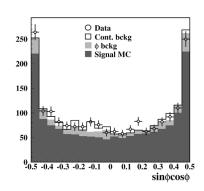
Backup: The Purity

- Shown is the response of a neural network on a fake data set (not related to physics or anything else)
- Purity: $P_S = \left[1 + R \times \frac{\bar{\epsilon}_S}{\epsilon_S}\right]^{-1}$, with R = ratio between number of background and signal events

Daniel Lersch (FSU) ISNET-6 12.10.2018 21 / 13


Backup: Combinatorics in Analysis of $\eta^{(\prime)} \to \pi^+\pi^-e^+e^-$

- To consider in data analysis: combinatorics
- Pass posterior probability form configuration i as prior probability to configuration i+1 (Adapted from PhD Thesis from Daniel Coderre (2012))
- Pick configuration with largest posterior probability


Configuration	Pos. Particle 1	Neg. Particle 1	Pos. Particle 2	Neg. Particle 2
1	π^+	π^-	e ⁺	e ⁻
2	π^+	e ⁻	e ⁺	π^-
3	e ⁺	e ⁻	π^+	π^-
4	e ⁺	π^-	π^+	e ⁻

12.10.2018 22 / 13

Backup: Details on $\eta^{(\prime)} ightarrow \pi^+\pi^-e^+e^-$

- Underlying decay: $\eta^{(\prime)} \to \pi^+ \pi^- \gamma$
- E₁-Transition of photon is CP-violating
 - ⇔ Need information about polarization of photon
 - ⇔ Experimental challenging
- Look at cases where: $\gamma^* o e^+ e^-$

- Determination of A_{Φ} via $\sin \Phi \cos \Phi$
- KLOE reconstructed: $1.6~{\rm k}$ $\eta \to \pi^+\pi^-e^+e^-$ events KLOE coll. Phys. Lett., B675:283-288,(2009)