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Physical Motivation



Scales in Physics

Grav. force (short distances):

F = −mg

Grav. force (large distances):

F = −GMm
r2

???

The laws look quite different!
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Scales in Physics

Grav. force (short distances):

F = −mg

Grav. force (large distances):

F = −GMm
r2

???

The laws look quite different!

Connected via series expansion about radius of Earth R:

F ≈ −mg+ 2mg
(
r − R
R

)
− 3mg

(
r − R
R

)2
+O

[(
r − R
R

)3]
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Scales in Physics

Grav. force (short distances):

F = −mg

Grav. force (large distances):

F = −GMm
r2???

The laws look quite different!

Can fit unknown parameters to data⇒ inverse problem!

F ≈ a0 + a1
(
r − R
R

)
+ a2

(
r − R
R

)2
+O

[(
r − R
R

)3]
2



Scales in Physics

Grav. force (short distances):

F = −mg

Grav. force (large distances):

F = −GMm
r2???

The laws look quite different!

Use prior info from physics:

F ≈ mg
{
a′0 + a′1
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Scales in Physics

Grav. force (short distances):

F = −mg

Grav. force (large distances):

F = −GMm
r2???

The laws look quite different!

Propagate full uncertainty

F ≈ mg
{
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Predictions in Low-Energy Nuclear Physics

• There is interesting physics at all
scales

• Nuclear physics spans lengths from
10−15–109m

• Fine details at one level of analysis
do not affect the physics at a
coarser level of analysis

• Start simple→ add corrections to
reach desired precision.
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Chiral EFT

NN force 3N force

LO

NLO

N2LO

1

• An expansion in the nuclear force
• Ordered by increasing factors of small parameter Q
• Truncation→ main source of uncertainty
• Force convergence 6= prediction convergence
• The debate on the “best” expansion is ongoing

We want to

• Fit unknown parameters ~a, or low-energy constants, with discrepancy δyth
• Quantify uncertainty in predictions (aka observables) yth
• Test existing EFTs, uncover physics

4



Chiral EFT

NN force 3N force

LO

NLO

N2LO

1

• An expansion in the nuclear force
• Ordered by increasing factors of small parameter Q
• Truncation→ main source of uncertainty
• Force convergence 6= prediction convergence
• The debate on the “best” expansion is ongoing

We want to

• Fit unknown parameters ~a, or low-energy constants, with discrepancy δyth

• Quantify uncertainty in predictions (aka observables) yth
• Test existing EFTs, uncover physics

4



Chiral EFT

NN force 3N force

LO

NLO

N2LO

1

• An expansion in the nuclear force
• Ordered by increasing factors of small parameter Q
• Truncation→ main source of uncertainty
• Force convergence 6= prediction convergence
• The debate on the “best” expansion is ongoing

We want to

• Fit unknown parameters ~a, or low-energy constants, with discrepancy δyth
• Quantify uncertainty in predictions (aka observables) yth

• Test existing EFTs, uncover physics

4



Chiral EFT

NN force 3N force

LO

NLO

N2LO

1

• An expansion in the nuclear force
• Ordered by increasing factors of small parameter Q
• Truncation→ main source of uncertainty
• Force convergence 6= prediction convergence
• The debate on the “best” expansion is ongoing

We want to

• Fit unknown parameters ~a, or low-energy constants, with discrepancy δyth
• Quantify uncertainty in predictions (aka observables) yth
• Test existing EFTs, uncover physics 4



yexp(x) = yth(x, ~a) + δyth(x) + δyexp

To theorists, magic

Parameters

Discrepancy

fit
Full Prediction

Can we build this?
Can we use it?
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Toy Predictions

• Theoretical predictions could look like the following

• One can change variables for convenience/insight.
• ∆yn = yrefcnQn

{y0}
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x
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0

Predictions

y0

y0 → LO
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Toy Predictions

• Theoretical predictions could look like the following
• One can change variables for convenience/insight.

• ∆yn = yrefcnQn
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Toy Predictions

• Theoretical predictions could look like the following
• One can change variables for convenience/insight.
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Toy Predictions

• Theoretical predictions could look like the following
• One can change variables for convenience/insight.
• ∆yn = yrefcnQn
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Toy Predictions

• Theoretical predictions could look like the following
• One can change variables for convenience/insight.
• ∆yn = yrefcnQn

y0 = yref
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Toy Predictions

• Theoretical predictions could look like the following
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Toy Predictions

• Theoretical predictions could look like the following
• One can change variables for convenience/insight.
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Toy Predictions

• Theoretical predictions could look like the following
• One can change variables for convenience/insight.
• ∆yn = yrefcnQn
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Real Life

Coefficients from NN scattering look like our toy model!
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Statistical Model



The Hierarchical Model

∆yn

Data

Parameterization

cn Q

Hyperparameters

αθ αQ

θ

y

Prediction

• Decompose prediction

yk = y0 +
k∑
n=1

∆yn

= yref
k∑

n=0
cnQn

• Put priors on cn (and Q)

pr(cn |θ)
iid∼ GP(µ, σ2R`)

• Learn θ and Q
• Predict pr(y | D)
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Gaussian Process Priors on Observable Coefficients

cn |θ
iid∼ GP(µ, σ2R`)

Conjugate priors:

µ |σ2 ∼ N (m, σ2V)
σ2 ∼ IG(a,b)

µ

σ

`
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µ

pr(µ |σ2)

0 2 4 6 8 10

σ2

pr(σ2)
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Model Building

Main equation

yk = yref
k∑
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cnQn cn ≡ yn − yn−1
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Model Building
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Model Building

Main equation
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Discrepancy Distribution

Remember the goal:

yexp(x) = yth(x, ~a) + δyth(x) + δyexp

Our convergence assumptions

pr(cn |θ)
iid
= GP(µ, σ2R`)

δyth(x) = yref
∞∑

n=k+1

cnQn

Gaussian sum rules

aN (µ1,Σ1) + bN (µ2,Σ2) = N (aµ1 + bµ2,a2Σ1 + b2Σ2)

Discrepancy Distribution

pr(δyth |θ) = GP (µth,Σth) = GP

(
µQk+1

1− Q
, y2ref

σ2Q2(k+1)

1− Q2
R`

)
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Implications for EFT Fitters

Standard χ2∑
i

[yexp,i − yth,i(~a)]2

σ2exp
=
∑
i

r(xi, ~a)2

σ2exp

• Gaussian process correlations propagate via Σth matrix (computed once!)
• Different correlation assumptions→ different results!
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What You Get for Free: Max Energy Insensitivity

• y axis: posterior median± 1σ
• x axis: max energy of data in fit

• Q, and hence δyth, grows with energy

δyth = yref
kmax∑
n=k+1

cnQn

• This weights high energy data less!
• Stabilizes LEC fit as a function of E
• Correlation assumptions can lead to
different results

13
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Quantifying Truncation Uncertainty
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What You Get for (Almost) Free: Evidence, Length Scale, & Breakdown Scale

This model permits mostly analytic calculation of evidence

pr(D | `,Q) = Γ(a?)
Γ(a)

ba

(b?)a?

√
|V?|
|V|

|2πR`|−(k+1)/2

|Q|k(k+1)/2

Important for model comparison and for posteriors:

pr(` | D,Q) ∝ pr(D | `,Q)pr(`)
pr(Q | D, `) ∝ pr(D | `,Q)pr(Q)

Here, Q ∝ 1
Λb

pr(Λb|c): Total Cross Section

N3LO

pr(Λb|c): Differential Cross Section

N3LO

pr(Λb|c): Spin Observables

N3LO
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Model Checking



Model Checking

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.

— Albert Einstein

Does our model refer to reality? How can we check?

Assumptions

1. cn are iid stationary GPs
2. Error bands have statistical
meaning

3. Squared exp. kernel→ R`

Tests

1. Compare posteriors from
individual curves & domains

2. Credible interval diagnostic
3. Variograms
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Takeaway Points

Truncation Model

• Replaces χ2 with its matrix
analog, very easy!

• Full error can be propagated
• Reduces Emax sensitivity and
bias of LEC posterior, but
need realistic correlations!
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need realistic correlations!

χ2mod(~a) = ~r ᵀ(~a)(Σth +Σexp)
−1~r(~a)
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Takeaway Points

Truncation Model
• Replaces χ2 with its matrix
analog, very easy!

• Full error can be propagated

• Reduces Emax sensitivity and
bias of LEC posterior, but
need realistic correlations!

pr(yexp) = N
[
yth(x, ~a) + µth,Σth

]
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Takeaway Points

Truncation Model
• Replaces χ2 with its matrix
analog, very easy!

• Full error can be propagated
• Reduces Emax sensitivity and
bias of LEC posterior, but
need realistic correlations!

Todo List
• Fit EFT+GP model with full
truncation + parameter
uncertainty

• Formalize/test model
checking techniques

• EFTs: pass or fail?

Suggestions welcome!
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Thank you!

arXiv:1808.08211 arXiv:1704.03308

https://arxiv.org/abs/1808.08211
https://arxiv.org/abs/1704.03308


Uncorrelated Posteriors

Assumes that the variance of the cn is independent at each point
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