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Connected via series expansion about radius of Earth R:
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Scales in Physics

( ) Grav. force (short distances):
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Can fit unknown parameters to data = inverse problem!
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Use prior info from physics:
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Scales in Physics

( ) Grav. force (short distances):
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Propagate full uncertainty
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Predictions in Low-Energy Nuclear Physics

- There is interesting physics at all
scales

- Nuclear physics spans lengths from
107"-10°m
- Fine details at one level of analysis

do not affect the physics at a
coarser level of analysis

- Start simple — add corrections to
reach desired precision.
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Chiral EFT

NN force 3N force
e f\ - - An expansion in the nuclear force
)(’ {(. t' - Ordered by increasing factors of small parameter Q
NLO t. . - - Truncation — main source of uncertainty
_ - Force convergence # prediction convergence
NLO +::' H’} X\ - The debate on the “best” expansion is ongoing

X

We want to

- Fit unknown parameters d, or low-energy constants, with discrepancy dyip,
- Quantify uncertainty in predictions (aka observables) yi,
- Test existing EFTs, uncover physics 4



Yexp(X) = Vin (X, @) + Y1h (X) + 0Vexp



To theorists, magic

/N

Yexp(X) = Yin(X, a) + Oyin(X) + 0Vexp

Parameters

Discrepancy



X2 fit
/\V

Yexp(X) = Yin(x, ) + Yexp



rigorous fit
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Yexp(X) = Vin (X, @) + Vi (X) + 0Vexp



Full Prediction
N

Yexp(X) = Vin (X, @) + Vi (X) + 0Vexp




Yexp(X) = Vin (X, @) + Vi (X) + 0Yexp

S —

Can we build this?
Can we use it?
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Toy Predictions

- Theoretical predictions could look like the following
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Toy Predictions

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
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Toy Predictions

- Theoretical predictions could look like the following
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Toy Predictions

- Theoretical predictions could look like the following
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Toy Predictions

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
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- Theoretical predictions could look like the following
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- Theoretical predictions could look like the following
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Toy Predictions

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.

© Ayp = yreanQn
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Toy Predictions

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
* AYp = YrerCnQ"
Y3 = Vref [0Q° + c1Q" + Q% + ¢3Q°]
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Real Life

Coefficients from NN scattering look like our toy model!
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Statistical Model
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The Hierarchical Model

Hyperparameters
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Prediction

- Decompose prediction
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n=1
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n=0

- Put priors on ¢, (and Q)

pr(cn|6) ~ GP(u,o°Re)

- Learn 8 and Q
- Predict pr(y | D)



Gaussian Process Priors on Observable Coefficients
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Gaussian Process Priors on Observable Coefficients

iid
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Model Building
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Model Building
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Discrepancy Distribution

Remember the goal:

yexp(X) = yth(Xa a) + ()-yih(x) + 5yexp
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Discrepancy Distribution

Remember the goal: Our convergence assumptions

Yexp(X) = Yen(X, @) + 0Yen(X) + 0Yexp pr(cn| @) = GP(u, o*Re)
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Discrepancy Distribution

Remember the goal: Our convergence assumptions
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Discrepancy Distribution

Remember the goal:

Yexp(X) = Vin(X, @) + + Vexp pr(cn |6) = GP(

OYn(X) = Vref Z cnQ"
n=R4+1

Gaussian sum rules

iid

Our convergence assumptions

o0

aN (1, £1) + bN (2, T2) = N'(apr + bz, @° 1 + b°L,)

MQk+1

Discrepancy Distribution

11, 0°Re)

, o Q2(f?+1)

pr(dyen |€) = GP (ktn, Zen) = GP (1 —q

ref 1_ Q2
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Implications for EFT Fitters

Z [yexp i — Yth I(a)] Z r(Xh 6)2
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Implications for EFT Fitters

Standard x? x° + Theory Error
Y Vth, r(xi,d D A=
ZM S MRA 2 (@) = T(E) (e + o) E)

Uexp ; Uexp

Yexp(x) yth(X G)
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Implications for EFT Fitters

Z Yexpl Ythl(aJ Zr(xh

Uexp Uexp

x? + Theory Error
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Implications for EFT Fitters

Z Yexpl Ythl(aJ Zr(xh

Uexp Uexp

x? + Theory Error

Xonod (@) = TT(G)(Zth + Zexp) " '7(d)

Yexp(x)q?a%h (X0)

Prediction + Theory Error

pr(yexp) = N[yth(X7 a) + Hth, z'Eh]

\.

- Gaussian process correlations propagate via ¥y, matrix (computed once!)
- Different correlation assumptions — different results!
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What You Get for Free: Max Energy Insensitivity

- y axis: posterior median & 1o

- X axis: max energy of data in fit L
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What You Get for Free: Max Energy Insensitivity

- y axis: posterior median & 1o

- X axis: max energy of data in fit L

- Q, and hence édy;,, grows with energy

I?max
OYih = Yref Z cnQ" (%L 08
n=R+1
=09
- This weights high energy data less! 04 i
. . =@ kmax =k + 1, uncorr.
- Stabilizes LEC fit as a function of E ke 0o, uncor.
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What You Get for Free: Max Energy Insensitivity

- y axis: posterior median & 1o
- X axis: max energy of data in fit

- Q, and hence dy;y,, grows with energy

k’max

5yth = Yref Z CnQn

n=k+1

- This weights high energy data less!
- Stabilizes LEC fit as a function of E

- Correlation assumptions can lead to
different results
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Quantifying Truncation Uncertainty

—20

Conditional Distributions

Ao Ao

Xy
-
X
X
A3

025 050 0.75 1.000.00 0.25 0.50 0.75 1.00
X X



Quantifying Truncation Uncertainty
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What You Get for (Almost) Free: Evidence, Length Scale, & Breakdown Scale

This model permits mostly analytic calculation of evidence

r(a*) pa ‘V*‘ lzﬂRér(kM)/z

pr(D|€> Q): r(a) (b*)a* ‘V‘ ’Q|f€(/?+1)/2
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This model permits mostly analytic calculation of evidence
M(a*) b%  [|V*]|2xR,|~(k+D/2
r(a) (b)« \ [V |QIkEn/2
Important for model comparison and for posteriors:
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What You Get for (Almost) Free: Evidence, Length Scale, & Breakdown Scale

This model permits mostly analytic calculation of evidence

r(a*) pa ‘V*‘ lzﬂRélf(f&T)/Z
F(a) (b¥)e | V| |Q[k(k+1)/2

Important for model comparison and for posteriors:

pr(D|¢,Q) =

pr(¢|D, Q) o« pr(D| ¢, Q) pr(¢) 1
Here, Q oc —
pr(Q| D, £) oc pr(D|¢,Q) pr(Q) Mo
pr(Ap|c): Total Cross Section pr(Ap|c): Differential Cross Section pr(Ap|c): Spin Observables

_m 4/(\_ N A 1
. — N4LO . - N4LO ' — N4LO
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Model Checking

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.

— Albert Einstein

Does our model refer to reality? How can we check?

s E=TEEED <D —

1. ¢y are iid stationary GPs 1. Compare posteriors from

2. Error bands have statistical individual curves & domains
meaning 2. Credible interval diagnostic

3. Squared exp. kernel — R, 3. Variograms

help? 16
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Truncation Model

=l

X%ﬂod(a) = T(a)(zth + Ze><p)4’_)(a)



Takeaway Points

Truncation Model

- Replaces y? with its matrix
analog, very easy!

J

Pr(Vexp) = N [Yin(X, @) + fith, Zin]



Takeaway Points

Truncation Model >

- Replaces x? with its matrix
analog, very easy!

- Full error can be propagated

- Reduces Epax sensitivity and
bias of LEC posterior, but
need realistic correlations!
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Takeaway Points
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Truncation Model ' o 7
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- Replaces y? with its matrix -
analog, very easy! 4
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- Full error can be propagated £ 08F '/ 9
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- Reduces Enax sensitivity and [
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need realistic correlations! —®  kmax = k + 1, corr.
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Takeaway Points

Truncation Model

- Replaces y? with its matrix
analog, very easy!
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- Full error can be propagated

- Reduces Emax sensitivity and
bias of LEC posterior, but
need realistic correlations!




Takeaway Points

Truncation Model
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- Replaces y? with its matrix - Fit EFT+GP model with full
analog, very easy! truncation + parameter
- Full error can be propagated uncertainty

- Reduces Emax sensitivity and
bias of LEC posterior, but
need realistic correlations!




Takeaway Points

Truncation Model m—

- Replaces y? with its matrix - Fit EFT+GP model with full
analog, very easy! truncation + parameter
uncertainty

- Full error can be propagated
- Formalize/test model
checking techniques

- Reduces Emax sensitivity and
bias of LEC posterior, but
need realistic correlations!




Takeaway Points

Truncation Model

D —

- Replaces y? with its matrix - Fit EFT+GP model with full
analog, very easy! truncation + parameter

- Full error can be propagated uncertainty

- Reduces Emayx sensitivity and - Formalize/test model
bias of LEC posterior, but checking techniques
need realistic correlations! - EFTs: pass or fail?

Suggestions welcome!



Thank you!

arXiv:1808.08211 arXiv:1704.03308



https://arxiv.org/abs/1808.08211
https://arxiv.org/abs/1704.03308

Uncorrelated Posteriors

Assumes that the variance of the ¢, is independent at each point
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Accuracy of three weather forecasting services
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Source: “The Signal and the Noise" by Nate Silver | Author: Randy Olson (randalolson.com / @randal_olson)

[~ Local TV Meteorologist
@-® The Weather Channel

B8 National Weather Service *
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