Bayesian Model Mixing A Nuclear Physics Perspective

Vojtech Kejzlar Department of Statistics and Probability, MSU

Collaborators: Léo Neufcourt, Frederi Viens, Taps Maiti, Witold Nazarewicz (STT/FRIB at MSU)

ISNET-6 Oct 8-12, 2018, TU Darmstadt

Outline

- BMA Practical Considerations and Challenges
- Bayesian Calibration of Computer Models
- 3 Averaging Models With Different Domains
- 4 Computing Evidence Integral
- 5 Illustrative Example

Introduction

Common scenario in nuclear physics: Use experimental measurements $(y_i)_{i=1}^n$ at known values $(x_i)_{i=1}^n$ of a physical process $x \mapsto y(x)$ to predict its values $y^* = y(x^*)$ at new input points x^* using a *computer model*.

General Bayesian Solution:

- Consider a quantity of interest interest Δ (unknown value of a observable y^* for given nuclear configuration x^*).
- ② Approximate $p(\Delta|y, \mathcal{M})$ given the data $y = (y_1, \dots, y_n)$ and model \mathcal{M} obtained from Bayes formula.

Introduction

Common scenario in nuclear physics: Use experimental measurements $(y_i)_{i=1}^n$ at known values $(x_i)_{i=1}^n$ of a physical process $x \mapsto y(x)$ to predict its values $y^* = y(x^*)$ at new input points x^* using a *computer model*.

General Bayesian Solution:

- Consider a quantity of interest interest Δ (unknown value of a observable y^* for given nuclear configuration x^*).
- ② Approximate $p(\Delta|y, \mathcal{M})$ given the data $y = (y_1, \dots, y_n)$ and model \mathcal{M} obtained from Bayes formula.

Situation with K competing models $\mathcal{M}_1, ..., \mathcal{M}_K$:

- $p(\Delta|y,\mathcal{M}) \Rightarrow p(\Delta|y,\mathcal{M}_k)$.
- BMA posterior distribution $p(\Delta|y)$ accounts for modeling uncertainty and can lead to better predictions (Witek's talk).

Practical Considerations and Challenges

• Calibration: Models under consideration rely on calibration parameters θ_k .

Practical Considerations and Challenges

- Calibration: Models under consideration rely on calibration parameters θ_k .
- Varying domains: $\mathcal{M}_1, ..., \mathcal{M}_K$ can be defined on different input domains.
 - Models constrained by observables of different nature.
 - Models are appropriate for different parts of nuclear domain.
 - One model has wider parameter space for a specific observable (models mostly fitted on binding energies or charged radii).

Practical Considerations and Challenges

- Calibration: Models under consideration rely on calibration parameters θ_k .
- Varying domains: $\mathcal{M}_1, ..., \mathcal{M}_K$ can be defined on different input domains.
 - Models constrained by observables of different nature.
 - Models are appropriate for different parts of nuclear domain.
 - One model has wider parameter space for a specific observable (models mostly fitted on binding energies or charged radii).
- Numerical integration: Posteriors on models $p(\mathcal{M}_k|y)$ need to be approximated.

Bayesian Calibration of Computer Models

Statistical formulation for a single model (Kennedy, O'Hagan, 2001):

$$y_i^m = \Psi_m(f(x_i, \theta)) + \delta(x_i) + \sigma_m(x_i)\epsilon_i$$
 (1)

Note: Ψ_m is here to emphasize that the same model typically produces and is fitted to m types of observables.

- $\Psi_m(f(x_i, \theta))$ is the computer model.
- $\delta(x)$ is the systematic error of the model, $\delta(x) \sim \mathcal{GP}(m_{\delta}(x), k_{\delta}(x, x'))$.
- ϵ_i are scaled measurement errors, $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$.

Bayesian Calibration of Computer Models

For expensive models $f(x, \theta)$ that we cannot evaluate at wish, it is common practice to model them as a Gaussian process:

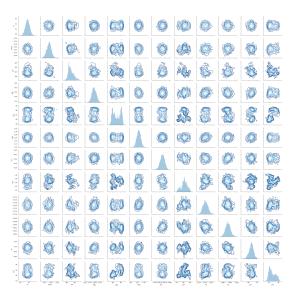
$$f(x,\theta) \sim \mathcal{GP}(m_f(x,\theta), k_f((x,\theta), (x',\theta')))$$

Computationally efficient alternative (linearization):

$$f(x,\theta) \approx f(x,\theta_0) + \nabla_{\theta} f(x,\theta_0)^T \cdot (\theta - \theta_0)$$
 (2)

Pros	Cons
Intuitive	Requires previous optimization
Computationally inexpensive	

Bayesian Calibration of Computer Models - UNEDF0



7 / 15

Averaging Models With Different Domains

Recurrent scenario: K competing models $\mathcal{M}_1, ..., \mathcal{M}_K$ defined on different input domains (Energy Density Functionals (EDF) vs many-body computations, or even between different EDFs)

 \Rightarrow Each model \mathcal{M}_k is calibrated on a subset $y^{(k)}$ of the data y.

The generic BMA allows us to compute the posteriors $p(\Delta|y^{(k)})$ and $p(\Delta|y^{(\infty)})$, where $y^{(\infty)} := \bigcap_k y^{(k)}$.

 \Rightarrow Additional argument needed, because we want $p(\Delta|y)$ for $y=\bigcup_k y^{(k)}$.

Averaging Models With Different Domains

Fortunately

$$p(\theta_k|y,\mathcal{M}_k) \propto p(\theta_k|y^{(k)},\mathcal{M}_k),$$

and

$$p(\mathcal{M}_k|y) \propto p(y^{(-k)}|y^{(k)})p(\mathcal{M}_k|y^{(k)}).$$

The BMA posterior for a general quantity Δ of interest:

$$p(\Delta|y) \propto \sum_{k=1}^{K} p(\Delta|y^{(k)}, \mathcal{M}_k) p(y^{(-k)}|y^{(k)}) p(\mathcal{M}_k|y^{(k)}). \tag{3}$$

Averaging Models With Different Domains

Fortunately

$$p(\theta_k|y,\mathcal{M}_k) \propto p(\theta_k|y^{(k)},\mathcal{M}_k),$$

and

$$p(\mathcal{M}_k|y) \propto p(y^{(-k)}|y^{(k)})p(\mathcal{M}_k|y^{(k)}).$$

The BMA posterior for a general quantity Δ of interest:

$$p(\Delta|y) \propto \sum_{k=1}^{K} p(\Delta|y^{(k)}, \mathcal{M}_k) p(y^{(-k)}|y^{(k)}) p(\mathcal{M}_k|y^{(k)}). \tag{3}$$

No major complication, we just need to compute an additional multiplicative corrective factor $p(y^{(-k)}|y^{(k)})$:)

Computing Evidence Integral

The evidence integral of the model \mathcal{M}_k

$$p(y^{(k)}|\mathcal{M}_k) = \int_{\theta_k} p(y^{(k)}|\theta_k, \mathcal{M}_k) \pi(\theta_k|\mathcal{M}_k) d\theta_k$$
 (4)

is the key quantity to the posterior probability of the different models, which are given according to Bayes formula.

Popular methods:

- Monte Carlo integration
- Laplace approximation

Fast alternative (recycling samples from Bayesian calibration):

$$p(\widehat{y^{(k)}|\mathcal{M}_k}) = \frac{n_C}{\sum_i p(y^{(k)}|\theta_k^{(i)}, \mathcal{M}_k)\pi(\theta_k^{(i)}|\mathcal{M}_k)}.$$

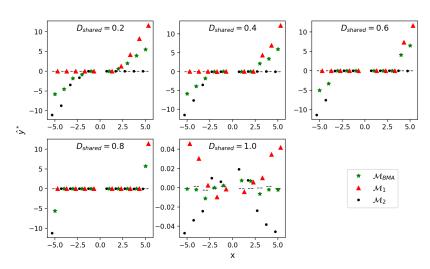
Scenario:

- Synthetic dataset with observations generated independently from $N(0, 10^{-3})$ at input points $x = (\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7, \pm 8, \pm 9)$.
- ullet Two competing computer models \mathcal{M}_1 and \mathcal{M}_2 defined as follows:

$$f_1(x,\theta_1) = 0.5x^2 + \theta_1, f_2(x,\theta_2) = -0.5x^2 + \theta_2,$$
 (5)

Each of the models \mathcal{M}_1 and \mathcal{M}_2 was assigned different training dataset $y^{(k)}$ for various proportion of shared observations (D_{shared}):

		Training dataset $y^{(k)}$																	
D_{shared}	Model	-9	-8	-7	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6	7	8	9
0.2	$egin{array}{c} \mathcal{M}_1 \ \mathcal{M}_2 \end{array}$	х	х	х	х	х	х	х	х	x x		х	х	х	х	х	х	х	х
0.4	$egin{array}{c} \mathcal{M}_1 \ \mathcal{M}_2 \end{array}$		х	x	х	х	х	х	x x				х	х	х	х	х	х	
0.6	$egin{array}{c} \mathcal{M}_1 \ \mathcal{M}_2 \end{array}$			х	х	х	х	x x	x x					х	х	х	x		
0.8	$egin{array}{c} \mathcal{M}_1 \ \mathcal{M}_2 \end{array}$				х	х		x x							x	х			
1	$egin{array}{c} \mathcal{M}_1 \ \mathcal{M}_2 \end{array}$					x x	x x	x x	x x										



D_{shared}	Model	\widehat{PMSE}	$p(y^{(k)} \mathcal{M}_k)$	$p(y^{(-k)} y^{(k)})$	\hat{r}_{BMA}	$P_{1,2}$
	\mathcal{M}_1	22.0	$1.17\cdot10^{-24}$	$9.88 \cdot 10^{-23}$	0.504	
0.2	\mathcal{M}_2	21.3	$1.18 \cdot 10^{-24}$	$9.07 \cdot 10^{-23}$	0.488	0.91
	\mathcal{M}_{BMA}	10.9	-	-	-	
	\mathcal{M}_1	21.7	$5.52\cdot10^{-23}$	$2.13\cdot 10^{-19}$	0.516	
0.4	\mathcal{M}_2	20.4	$5.84 \cdot 10^{-23}$	$2.13 \cdot 10^{-19}$	0.485	0.95
	\mathcal{M}_{BMA}	10.5	-	-	-	
	\mathcal{M}_1	19.0	$3.98 \cdot 10^{-21}$	$1.03\cdot10^{-14}$	0.498	
0.6	\mathcal{M}_2	18.6	$3.99 \cdot 10^{-21}$	$1.30 \cdot 10^{-14}$	0.487	1.26
	\mathcal{M}_{BMA}	9.54	-	-	-	
	\mathcal{M}_1	13.0	$2.65\cdot10^{-19}$	$5.52\cdot10^{-9}$	0.508	
0.8	\mathcal{M}_2	12.7	$2.67 \cdot 10^{-19}$	$5.61 \cdot 10^{-9}$	0.497	1.01
	\mathcal{M}_{BMA}	6.39	-	-	-	
1	\mathcal{M}_1	$6.16\cdot 10^{-4}$	$2.14\cdot10^{-18}$	-	0.956	
	\mathcal{M}_2	$8.68 \cdot 10^{-4}$	$2.17 \cdot 10^{-18}$	-	0.969	0.99
	\mathcal{M}_{BMA}	$2.71\cdot 10^{-5}$	-	-	-	

Figure: BMA results for model scenario with different domains. Here, $P_{1,2} = p(y^{(-1)}|y^{(1)})p(\mathcal{M}_1|y^{(1)})/[p(y^{(-2)}|y^{(2)})p(\mathcal{M}_2|y^{(2)})]$

 $P_{1,2} = p(y \leftarrow \gamma | y \leftarrow \gamma) p(\gamma v_{11} | y \leftarrow \gamma) / [p(y \leftarrow \gamma | y \leftarrow \gamma) p(\gamma v_{12} | y \leftarrow \gamma)]$

Vojtech Kejzlar (MSU) Bayesian Model Mixing ISNET-6 14 / 15

Thank you!

kejzlarv@stt.msu.edu