Uncertainty in nuclear-reaction calculations involving halo nuclei

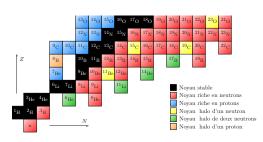
Pierre Capel

- Introduction
 - Halo nuclei
 - Reaction model
- Uncertainties in nuclear-reaction modelling
 - in halo-nucleus description
 - solving the problem with Halo-EFT
 - in optical potentials
 - looking for a solution from xEFT N-N interaction
- Summary

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure:

- Light, n-rich nuclei
- Low S_n or S_{2n}


Exhibit large matter radius

due to strongly clusterised structure :

neutrons tunnel far from the core and form a halo

One-neutron halo

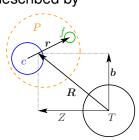
¹¹Be ≡ ¹⁰Be + n ¹⁵C ≡ ¹⁴C + n Two-neutron halo ⁶He ≡ ⁴He + n + n ¹¹Li ≡ ⁹Li + n + n

Reactions with halo nuclei

```
Halo nuclei are fascinating objects but difficult to study [\tau_{1/2}(^{11}Be)=13 \text{ s}] \Rightarrow require indirect techniques, new probes, like reactions:
```

```
Breakup ≡ dissociation of halo from core
by interaction with target
```

```
Need good understanding of the reaction mechanism
(i.e. a good reaction model)
to know to what the probe is sensitive
(i.e. what nuclear-structure information it provides)
have reliable inputs for the model
(i.e. optical potentials to describe the interactions with target)
```


Here I look at the uncertainty related to the last two points For the former, a precise reaction models is coupled with Halo EFT For the latter, I do what I can...

Reaction model

Projectile (P) modelled as a two-body quantum system : core (c)+loosely bound nucleon (f) described by

$$H_0 = T_r + V_{cf}(\mathbf{r})$$

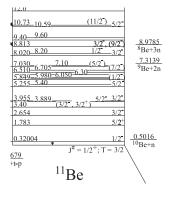
 V_{cf} effective interaction describes the projectile structure with ground state Φ_0

Target T assumed structureless

Interaction with target simulated by optical potentials U_{cT} and U_{fT} \Rightarrow breakup reduces to three-body scattering problem :

$$\left[T_R + H_0 + U_{cT} + U_{fT}\right] \Psi(\mathbf{r}, \mathbf{R}) = E_T \Psi(\mathbf{r}, \mathbf{R})$$

with initial condition $\Psi(\mathbf{r},\mathbf{R}) \underset{Z \to -\infty}{\longrightarrow} e^{iKZ} \Phi_0(\mathbf{r})$

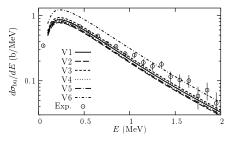

We use the Dynamical Eikonal Approximation (DEA)

[Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Sources of uncertainty

- \bullet V_{cf}
 - Describes the projectile structure
 - Fitted to external data (binding energy...)
 - Not an observable in the sense of J. Oakley but it still has meaning outside the reaction code
- \bullet U_{cT} and U_{fT}
 - Optical potentials simulating the c-T and f-T interaction
 - Found in the literature
 - Not observable either
 - Very uncertain
- Numerical parameters
 - Control inputs
 - Value chosen to ensure convergence of numerical scheme

11 Be $\equiv ^{10}$ Be \otimes n



- $\frac{1}{2}^+$ ground state : $\epsilon_{\frac{1}{2}^+} = -0.503$ MeV In our model, seen as $1s_{\frac{1}{2}}$ neutron bound to 10 Be(0^+)
- $\frac{1}{2}$ bound excited state : $\epsilon_{\frac{1}{2}} = -0.184$ MeV In our model, seen as $0p_{\frac{1}{2}}$ neutron bound to 10 Be(0^+)

Uncertainty in halo-nucleus description

 11 Be+Pb \rightarrow 10 Be+n+Pb @ 69AMeV

We have used phenomenological V_{cf} with different geometries Fitted to reproduce 11 Be low-energy spectrum

Exp. : [Fukuda *et al.* PRC 70, 054606 (2004)] Th. : [P.C., Nunes, PRC 73, 014615 (2006)]

 \Rightarrow significant variation in $d\sigma_{\rm bu}/dE$

Can we control this uncertainty?

Halo EFT description of ¹¹Be

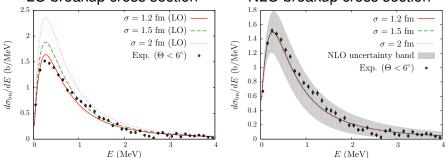
Use Halo EFT : clear separation of scales

⇒ provides an expansion parameter (small scale / large scale) upon which the low-energy behaviour is expanded (cf. S. Wesolowski)

[H.-W. Hammer, C. Ji, D. R. Phillips JPG 44, 103002 (2017)]

Use narrow Gaussian potentials : $V_{cf}(r) = V_0 \ e^{-\frac{r^2}{2\sigma^2}} + V_2 \ r^2 e^{-\frac{r^2}{2\sigma^2}}$

Fit V_0 and V_2 to reproduce known experimental values (and *ab initio* predictions [A. Calci *et al.* PRL 117, 242501 (2016)])


 σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity of the calculations to short-range physics

@LO: $V_2 = 0 \& V_0$ adjusted to fit $\epsilon_{1/2^+}$ in s wave $(V_{cf} = 0 \ \forall l > 0)$

@NLO : V_2 & V_0 adjusted in s and p waves to fit $\epsilon_{1/2^+}$ & $\epsilon_{1/2^-}$, ANCs and $\delta_{p3/2}$ (ab initio predictions) $(V_{cf}=0 \ \forall l>1)$

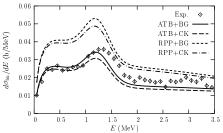
[PC, D. R. Phillips, H.-W. Hammer PRC 98, 034610 (2018)]

LO & NLO analyses of ¹¹Be+Pb→¹⁰Be+n+Pb @ 69AMeV LO breakup cross section NLO breakup cross section

Exp. : [Fukuda et al. PRC 70, 054606 (2004)]

Th.: [PC, D. R. Phillips, H.-W. Hammer PRC 98, 034610 (2018)]

- LO: Large differences due to differences in ANC
- NLO : All calculations identical (ANCs & δ_p fitted) Excellent agreement with data
- ⇒ Halo EFT shows which degrees of freedom matter


i.e. which structure observables are probed in reaction provides an estimate of the uncertainty due to truncation

Uncertainty in optical potentials

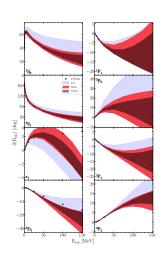
The reaction model requires optical potentials U_{cT} and U_{fT}

$$\left[T_R + H_0 + U_{cT} + U_{fT}\right] \Psi(\mathbf{r}, \mathbf{R}) = E_T \Psi(\mathbf{r}, \mathbf{R})$$

How can one estimate the uncertainty related to these interactions? Example : $^{11}\text{Be+C} \rightarrow ^{10}\text{Be+n+C} \oslash 67A\text{MeV}$

Exp. : [Fukuda *et al.* PRC 70, 054606 (2004)] Th. : [P. C., Goldstein, Baye PRC 70, 064605 (2004)]

⇒ that uncertainty can be huge

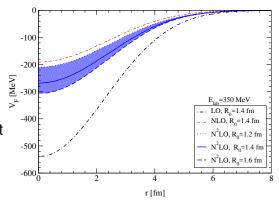

Problem: reaction calculations are expensive ⇒ use emulator?

Idea: build our own optical potential

Idea : using a double-folding procedure with accurate NN interactions from $\chi {\sf EFT}$

Gezerlis *et al.* have developed local NN interactions up to N²LO [PRL 111, 032501 (2013), PRC 90, 054323 (2014)]

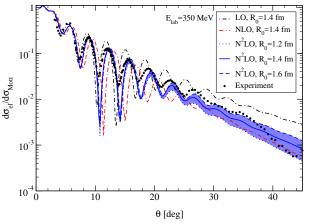
Based on this formalism, build a double-folding potential V_F



¹⁶O-¹⁶O potential

Potential built

- at different orders
- for different cutoffs


Calculations by V. Durant PLB 782, 668 (2018)

The imaginary part is assumed proportional to V_F

$$U_F(r) = (1 + N_W i) V_F(r)$$
 with $N_W = 0.6 - 0.8$

¹⁶O-¹⁶O elastic scattering @350 MeV

- Fair agreement with experiment (no fitting parameter)
- Systematic order-by-order behaviour
- Small uncertainty related to the cutoff
- Larger uncertainty to N_W

Summary and prospect

- Halo nuclei studied mostly through reactions
- Mechanism of reactions with halo nuclei understood
- Halo EFT
 - emulates ab initio structure calculations in reaction codes
 - shows which degrees of freedom matter
 - provides an estimate of the uncertainty
- Optical potentials have huge impacts on reaction calculations
 - Could we estimate this uncertainty using an emulator?
 - Can be built by double-folding from χ EFT NN interactions

Thanks...

to you for your attention and to my collaborators

Daniel Phillips

Victoria Durant Lukas Huth Hans-Werner Hammer Achim Schwenk

Daniel Baye Gerald Goldstein

