

Quantifying errors in effective theories for heavy nuclei

Toño Coello Pérez

Outline

Deformed systems

- Energy spectra
- Characterization of rotational bands

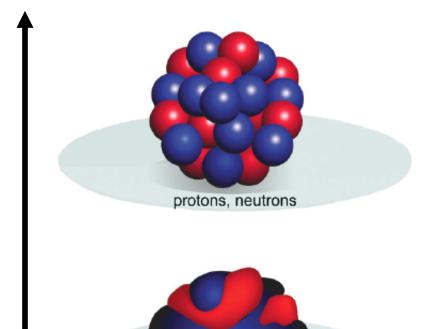
Spherical systems

- Energy spectra
- Electric quadrupole properties

Weak decays

- β decays to excited states
- $2\nu\beta\beta$ decays in the SSD approximation

Relevant energy scales



nucleonic densities and currents

Chiral EFT

Nucleon and pion fields

BREAKDOWN SCALE Λ

ET

Orientation angles

 $\xi \sim 100 \text{keV}$

• Phonons

 $\omega \sim 1000 \mathrm{keV}$

Rotations and vibrations in deformed nuclei

Degrees of freedom

$$v_{\pm 1} \equiv \mp \sqrt{\frac{1}{2}} \left(\dot{\theta} \pm i \dot{\phi} \sin \theta \right)$$

$$\Psi_0 = \zeta + \psi_0 \qquad \Psi_{\pm 2} = \psi_2 e^{\pm i2\gamma}$$

The Hamiltonian

$$H \approx H^{(0)} + H^{(1)} + H^{(2)} + H^{(3)} + H^{(4)}$$

 $H^{(0)}$: Harmonic excitations

 $H^{(1)}$: Anharmonic corrections

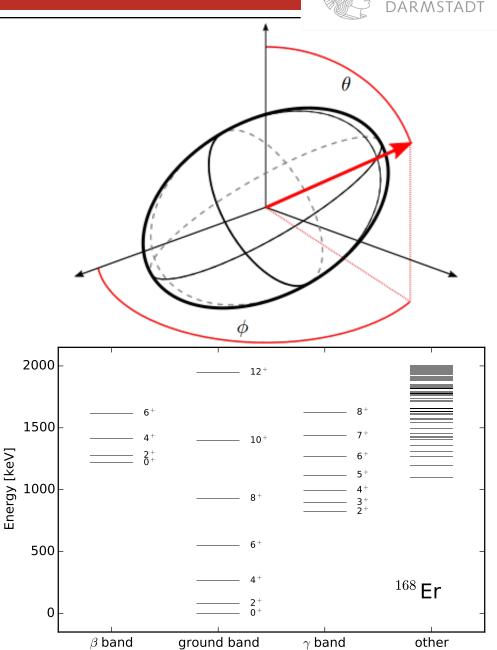
 $H^{(2)}$: Rigid rotor

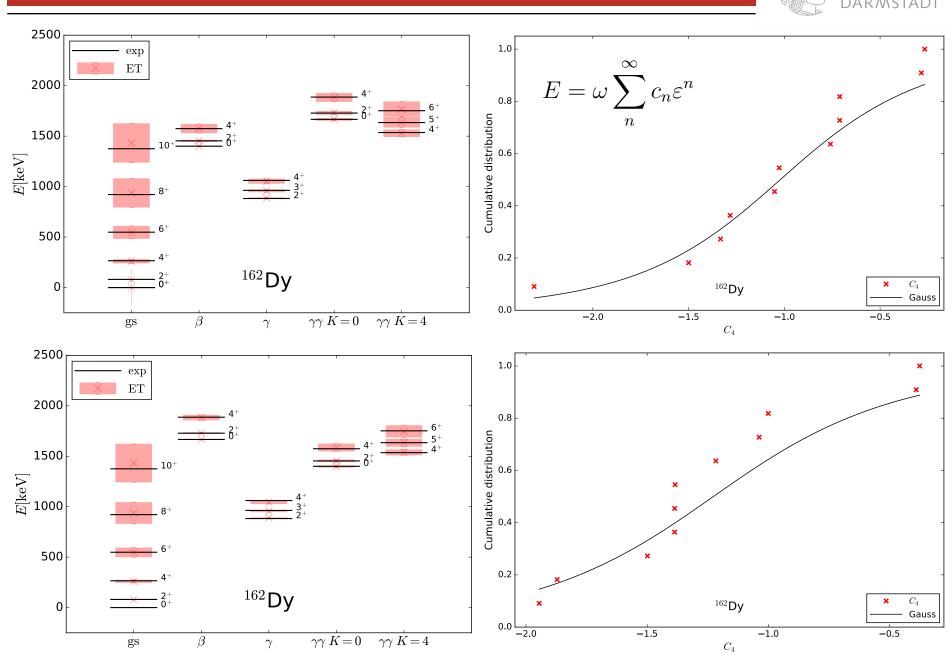
 $H^{(3)}$: Off-diagonal corrections

 $H^{(4)}$: Corrections to moment of inertia

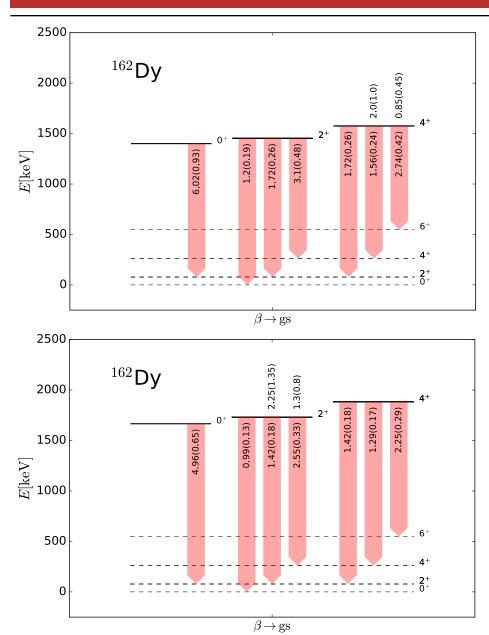
where the *n*-th term is of order

$$\mathcal{O}(\varepsilon^{n/2}) \qquad \varepsilon \equiv \xi/\omega$$





E2 interband transition strengths



Electric quadrupole transition strengths depend on LECs that appear in the Hamiltonian

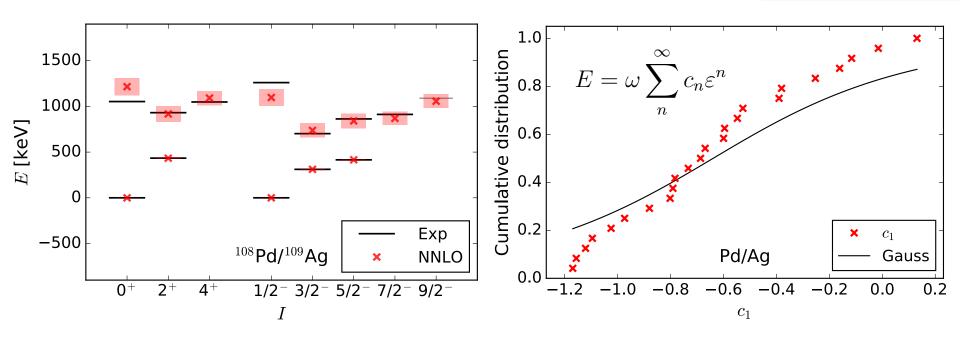
PDFs for these LECs allow us to estimate transition strengths between states in different bands

$$B(E2; i_{\beta} \xrightarrow{\beta} f_{gs}) = q^2 \frac{C_{\beta}^2}{4C_0^2 \omega_0} \left(C_{I_i 020}^{I_f 0} \right)^2$$

$$C_{\beta} \sim C_{\gamma} \sim \xi^{-1/2}$$

Data by courtesy of Ani Aprahamian

Vibrations in spherical nuclei



Hamiltonian written in terms of creation and annihilation operators

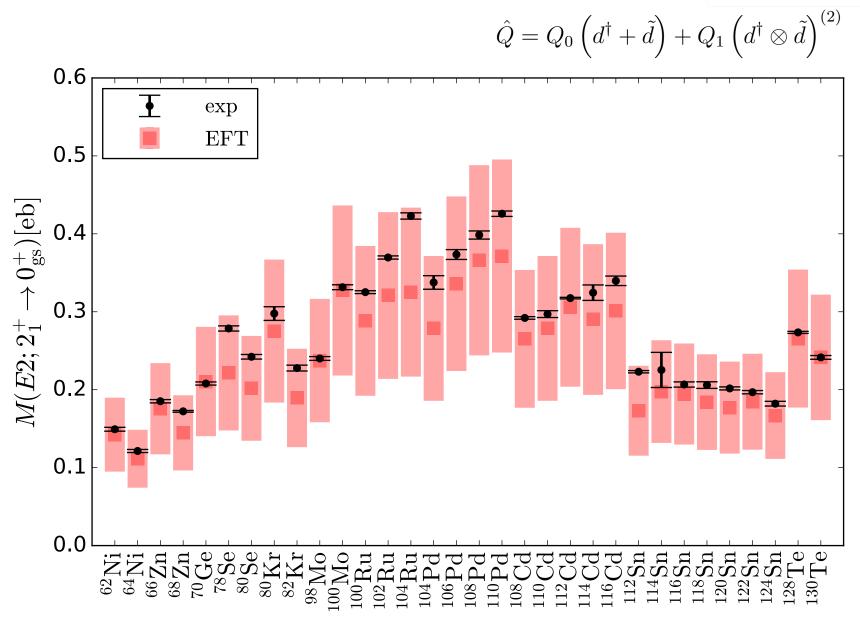
$$\left[d_{\mu}, d_{\nu}^{\dagger}\right] = \delta_{\mu\nu} \qquad \left\{a_{\mu}, a_{\nu}^{\dagger}\right\} = \delta_{\mu\nu}$$

LO: Bohr and Mottelson model

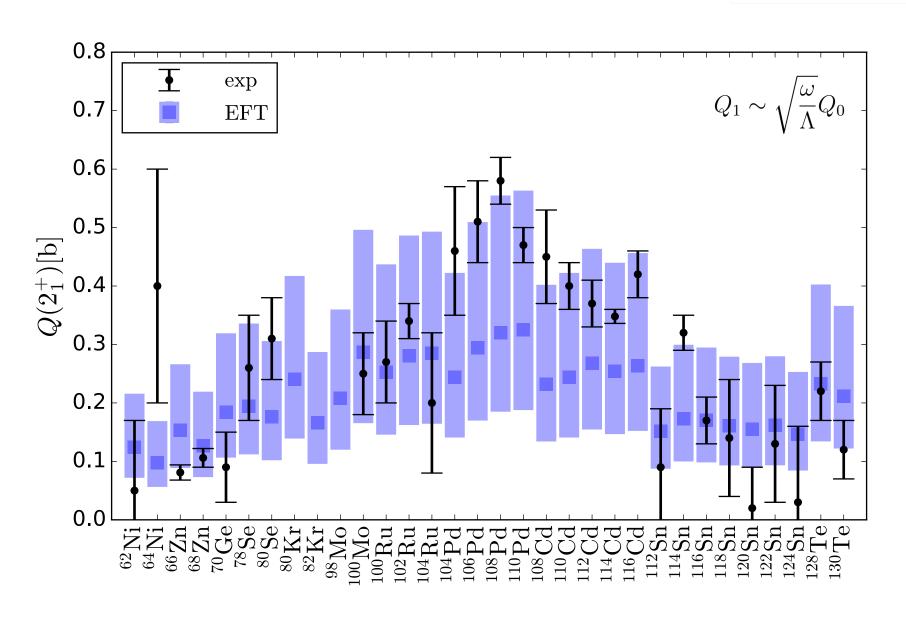
NLO: Core-fermion interactions

NNLO: Anharmonicities

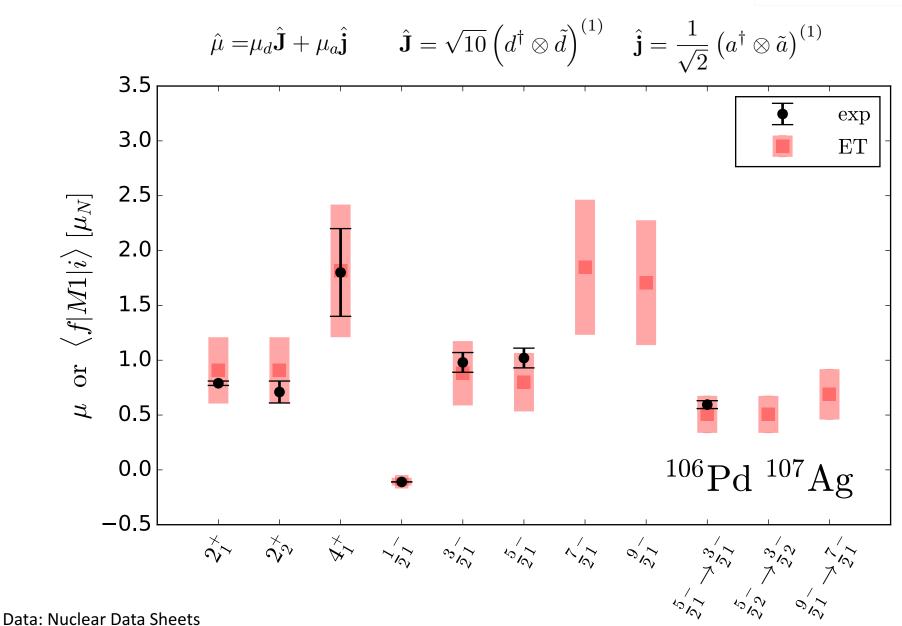
E2 transition matrix elements



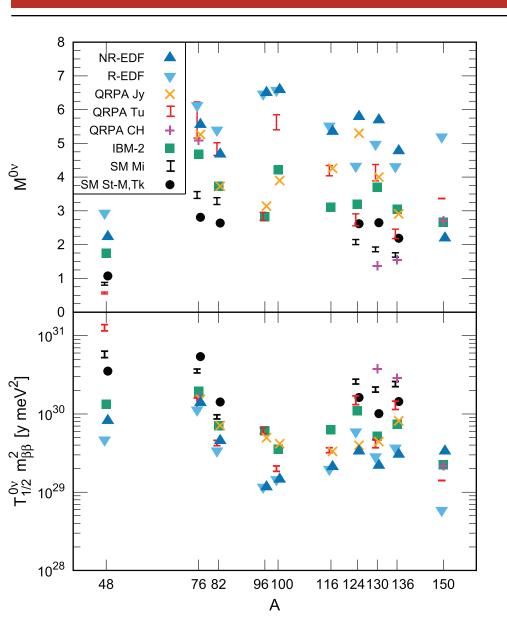
Static E2 moments



Static M1 static moments and M1 transition matrix elements



Study of β and $2\nu\beta\beta$ decays



Matrix elements for $0\nu\beta\beta$ decays exhibit large disagreement from model to model

Provide $0\nu\beta\beta$ matrix elements with associated theoretical uncertainties

We start studying β and $2\nu\beta\beta$ for which experimental data is available

Engel, Menéndez; Rep. Prog. Phys. 80, 046301 (2017)

Effective Gamow-Teller operator

Low-lying odd-odd states

$$|IM; j_p; j_n\rangle = \sum_{\mu\nu} C^{IM}_{j_n\mu j_p\nu} n^{\dagger}_{\mu} p^{\dagger}_{\nu} |0\rangle$$

Effective Gamow-Teller operator

$$\hat{O}_{\beta} = C_{\beta} \left(\tilde{p} \otimes \tilde{n} \right)^{(1)}$$

$$+ \sum_{\ell} C_{\beta\ell} \left[\left(d^{\dagger} + \tilde{d} \right) \otimes \left(\tilde{p} \otimes \tilde{n} \right)^{(\ell)} \right]^{(1)}$$

$$+ \sum_{L\ell} C_{\beta L\ell} \left[\left(d^{\dagger} \otimes d^{\dagger} + \tilde{d} \otimes \tilde{d} \right)^{(L)} \otimes \left(\tilde{p} \otimes \tilde{n} \right)^{(\ell)} \right]^{(1)}$$

LO term:

• Couples states with $\Delta \mathcal{N} = 0$

NLO term:

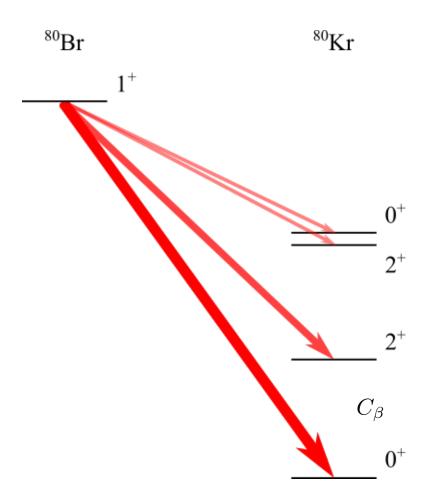
• Couples states with $\Delta \mathcal{N}=1$

NNLO term:

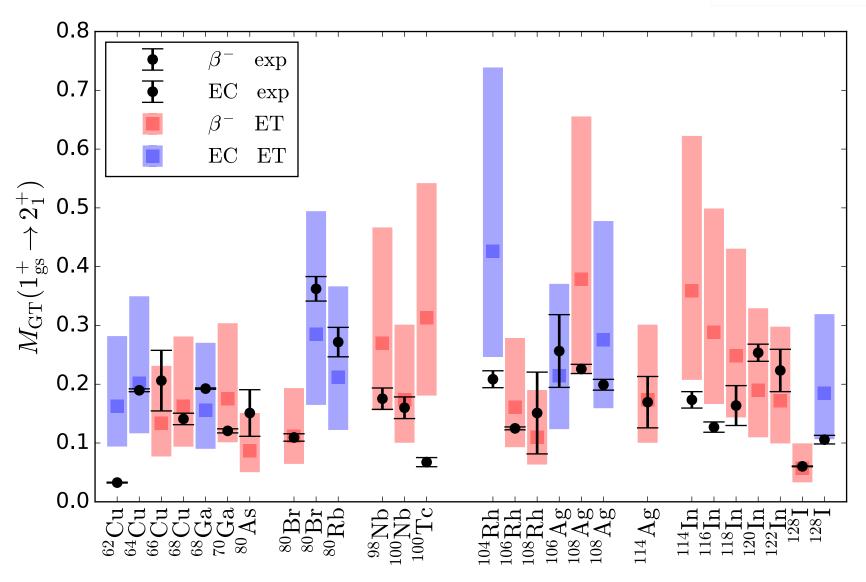
• Couples states with $\,\Delta\mathcal{N}=2\,$

From the power counting

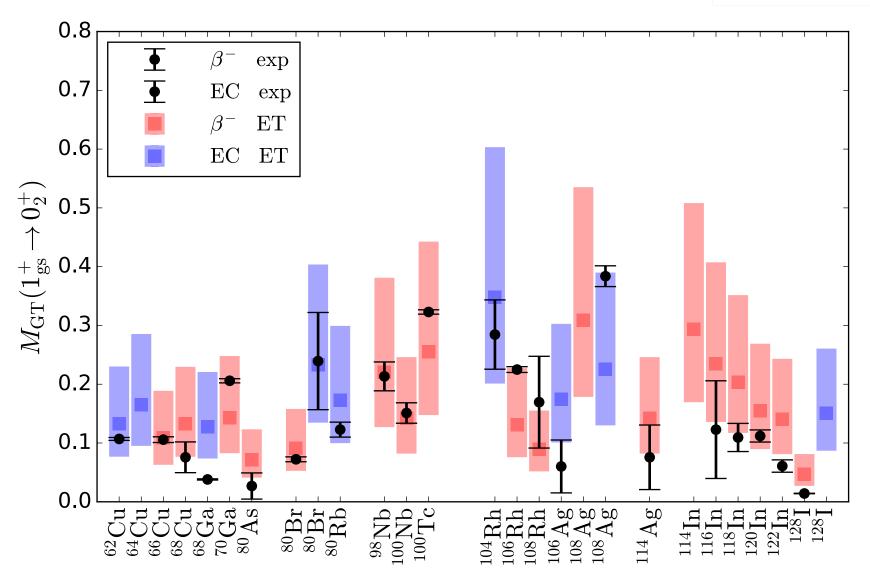
$${C_{eta\ell}\over C_{eta}}~\sim~0.58~$$
 and ${C_{eta L\ell}\over C_{eta}}~\sim~0.33$



β decays to excited states



β decays to excited states



Error due to the SSD approximation

GT matrix elements for $2\nu\beta\beta$ decay

$$M_{\rm GT}^{2\nu} = \sum_{n} \frac{\langle f || \sum_{a} \boldsymbol{\sigma}_{a} \tau_{a}^{+} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \sum_{b} \boldsymbol{\sigma}_{b} \tau_{b}^{+} || i \rangle}{D_{nf} / m_{e}}$$

SSD approximation

$$M_{\rm GT}^{2\nu}(i \to f) \approx \frac{M_{\rm GT}(1_1^+ \to 0_f^+) M_{\rm GT}(0_i^+ \to 1_1^+)}{D_{1f}/m_e c^2}$$

Percentual uncertainty estimate

$$\delta(gs \to gs) = \frac{D_{11}}{\Lambda} \Phi\left(\frac{\omega}{\Lambda}, 1, \frac{D_{11} + \omega}{\omega}\right)$$

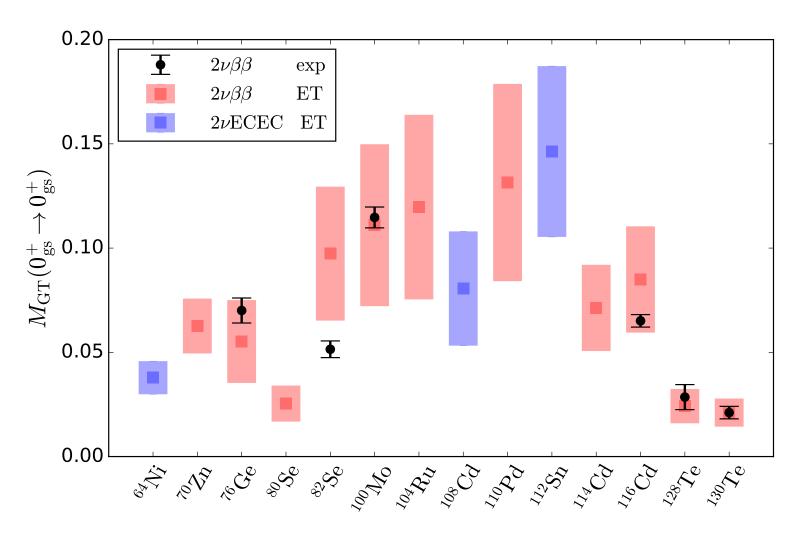
where

$$\Phi(z, s, a) \equiv \sum_{n=0}^{\infty} \frac{z^n}{(a+n)^s}$$



Matrix elements for $2\nu\beta\beta$ decays

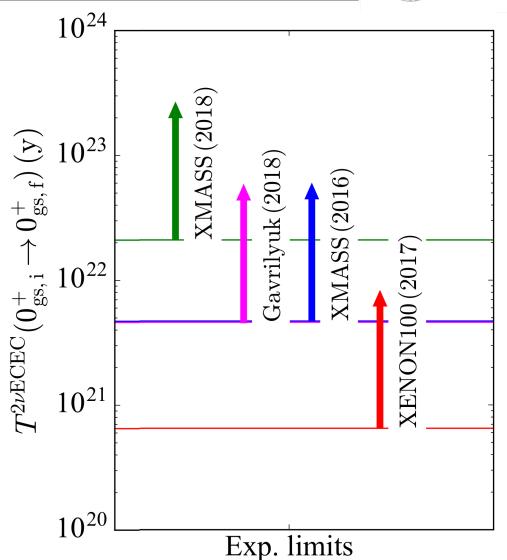
Good agreement with experiment where data exist



Half-life for the 2ν ECEC on 124 Xe

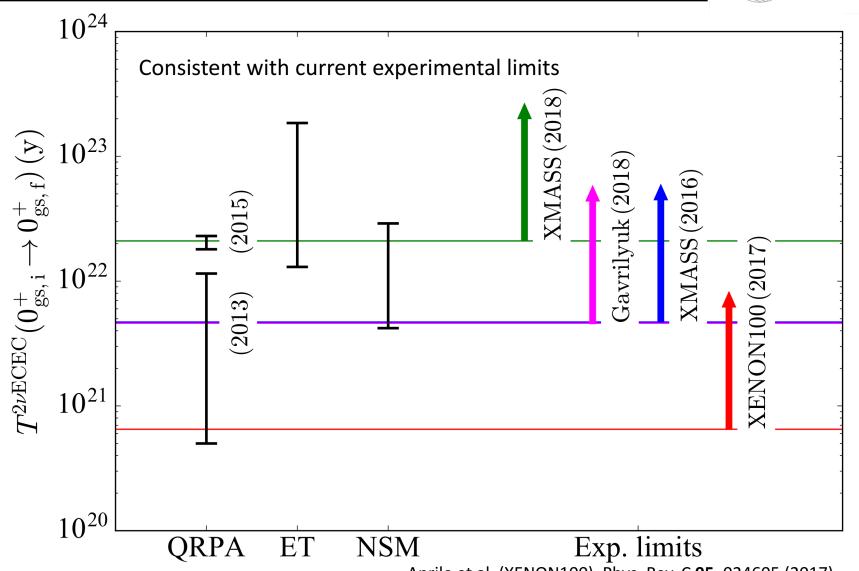
Large xenon detectors for dark matter experiments have enough sensitivity to observe the double-EC on ¹²⁴Xe

The most recent experimental lower limit for its half-life excludes theoretical calculations (most of them performed with the QRPA)



Aprile et al. (XENON100), Phys. Rev. C **95**, 024605 (2017) Abe et al. (XMASS), Progr. Theor. Exp. Phys. **2018**, 053D03 (2018) Gavrilyuk et al., Phys. Part. Nucl. **49**, 36 (2018)

Half-life for the 2ν ECEC on 124 Xe



Aprile et al. (XENON100), Phys. Rev. C **95**, 024605 (2017)

Abe et al. (XMASS), Progr. Theor. Exp. Phys. 2018, 053D03 (2018)

Gavrilyuk et al., Phys. Part. Nucl. 49, 36 (2018)

Summary

We constructed effective theories to describe the low-energy properties of heavy nuclei The systematic construction of the operators allows us to employ Bayesian methods to quantify the theoretical uncertainty associated to their matrix elements

The low-energy spectra and electromagnetic properties of heavy nuclei is consistently described once the theoretical uncertainty is taken into account

In spherical systems, the ET consistently describes observed $2\nu\beta\beta$ decays once the SSD approximation error is taken into account

A correlation between the double GT and the $0\nu\beta\beta$ matrix elements might allow us to provide an uncertainty for the latter

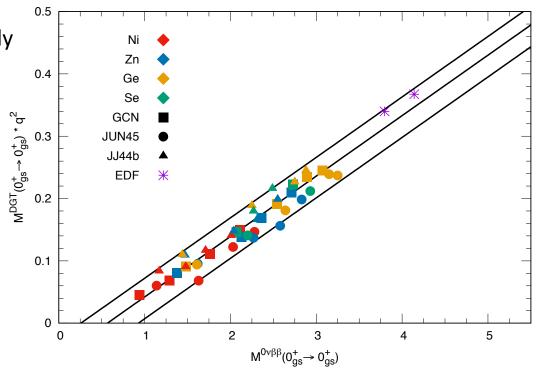


Figure by courtesy of Javier Menéndez