Examining the Origin of the *r*-process Rare-Earth Abundance Peak with Markov Chain Monte Carlo

Elements

Nicole Vassh University of Notre Dame ISNET-6 Conference, Oct. 9, 2018 The physics problem: heavy element nucleosynthesis via rapid neutron capture (*r*-process)

H			Big Ban fusi	Big Bang fusion		Dying low-mass stars		Exploding massive stars			Human synthesis No stable isotopes)		
Li 3	Be		Cos	mic		Mergir	ng	E	xplod	ing		B	C	N 7	0	F 9	Ne 10
Na 11	Mg 12		fiss	ion		neutro stars	dwarfs			AI 13	Si 14	P 15	S 16	CI 17	Ar 18		
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 48	Ag	Cd 48	In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	°	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra	- ا	1.2	Co	Dr	Nd	Dm	Sm	Eu	Gd	Th	Dv	Ho	Er	Tm	Vh	1 m
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

Neutron star mergers

Sites of heavy element production in a Neutron Star Merger

Accretion disk winds -

exact driving mechanism and neutron richness varies

Owen and Blondin

r-process - rapid neutron capture

s-process – slow neutron capture

Ν

Studying Rare-Earth Nuclei to Understand *r*-process Lanthanide Production

Experimental Mass Measurements:

AME 2016

Jyväskylä

CPT at CARIBU

Studying Rare-Earth Nuclei to Understand *r*-process Lanthanide Production

Experimental Mass Measurements:

AME 2016

Jyväskylä

CPT at CARIBU

Theory (ND, NCSU, LANL):

Markov Chain Monte Carlo Mass Corrections to the Duflo-Zuker Model which **reproduce the observed rare-earth abundance peak**

(**right**: result with s/k=30, τ =70 ms, Y_e =0.2)

The statistical method: Markov Chain Monte Carlo + nucleosynthesis calculations

Standard *r*-process calculation

Astrophysical conditions

Fission Yields

Rates (n capture, β -decay, fission....)

Nuclear masses

Nucleosynthesis code (PRISM)

> Abundance prediction

Reverse Engineering *r*-process calculation

Astrophysical conditions

Fission Yields

Rates (n capture, β -decay, fission....)

Nucleosynthesis code (PRISM)

Nuclear masses

Abundance prediction

Markov Chain Monte Carlo (MCMC) Likelihood function

MCMC procedure

- Monte Carlo mass corrections
 M(Z,N) = M_{DZ}(Z,N) + a_Ne^{-(Z-C)²/2f}
- Check: $\sigma_{\rm rms}^2(M_{\rm AME12}, M) \le \sigma_{\rm rms}^2(M_{\rm AME12}, M_{DZ})$
- Check:

 $D_n(Z,A) = \ (-1)^{A-Z+1} \big(S_n(Z,A+1) - S_n(Z,A) \big) > 0$

- Update nuclear quantities and rates
- Perform nucleosynthesis calculation
- Calculate $\chi^2 = \sum_{A=150}^{180} \frac{(Y_{\odot,r}(A) Y(A))^2}{\Delta Y(A)^2}$
- Update parameters OR revert to last success

$$\mathcal{L}(m) = \exp\left(-\frac{\chi^2(m)}{2}\right) \longrightarrow \alpha(m) = \frac{\mathcal{L}(m)}{\mathcal{L}(m-1)}$$

Black – solar abundance data **Grey** – AME 2012 data **Red** – values at current step Blue – best step of entire run

Examples: before σ_{rms} check

after

Example of an unphysical solution: before D_N check

Vassh et al (in preparation)

Sneden, Cowan, and Gallino (2008)

Sensitivity to Solar Data: uncertainty from the s-process subtraction

Goriely 1998 Solar Data (black), MCMC Solution (red)

Sensitivity to Solar Data: uncertainty from the s-process subtraction

Sneden+ 2008 Solar Data (black), MCMC Solution (red)

Beer+ 1997 Solar Data (black), MCMC Solution (red)

Sensitivity to Solar Data: uncertainty from the s-process subtraction

Parallel Chains Method of MCMC

- Highly correlated parameters → long convergence time for a single run
- Multiple independent runs allow for a thorough search of parameter space
- Well-defined statistics when combine results from independent runs

Parallel Chains Method: searching parameter space

Black star – best step value for the run shown

Red star – average best values of 50 runs

Vassh et al (in preparation)

Parallel Chains Method: error bars

Mass values for **50 MCMC runs** given the same astro conditions

Results: Neutron-rich nuclear masses found capable of peak formation

Results

- Astrophysical trajectory: hot, low entropy wind as from a NSM accretion disk (s/k=30, τ=70 ms, Y_e=0.2)
- 50 parallel, independent MCMC runs; Average run χ²~23

Orford, Vassh, Clark, McLaughlin, Mumpower, Savard, Surman, Aprahamian, Buchinger, Burkey, Gorelov, Hirsh, Klimes, Morgan, Nystrom, and Sharma (Phys. Rev. Lett. **120**, 262702 (2018))

Dynamic Mechanism Of Rare-Earth Peak Formation

Detailed balance implies

 $(\gamma, \mathbf{n}) \propto e^{-S_{\mathbf{n}}/kT}$

r-process path tends to lie along contours of constant separation energy

Pile-up of material at kinks

NOTE: FISSION is the other possible means of REP formation

Peak Formation with an MCMC Mass Solution

Rare-Earth Peak with MCMC solution + similar astro conditions

Orford, Vassh, et al (Phys. Rev. Lett. **120**, 262702 (2018))

Rare-Earth Peak with MCMC solution + distinct astro conditions

Vassh et al (in prep.)

Nucleosynthesis in Neutron Star Mergers: Many Open Questions

- Can mergers account for all the *r*-process material observed in the galaxy?
- $\,\circ\,\,$ Are precious metals such as gold produced in sufficient amounts?
- Are actinides produced?
- Where within the merger environment does nucleosynthesis occur and under what specific conditions?
- $\circ~$ How does the rare-earth peak form?

Nucleosynthesis in Neutron Star Mergers: Many Open Questions

- Can mergers account for all the *r*-process material observed in the galaxy?
- $\,\circ\,\,$ Are precious metals such as gold produced in sufficient amounts?
- \circ Are actinides produced?
- Where within the merger environment does nucleosynthesis occur and under what specific conditions?

 $\circ~$ How does the rare-earth peak form?

Vassh et al (in preparation)

Orford, Vassh, et al (Phys. Rev. Lett. 120, 262702 (2018))

Back-up Slides

Observed Elemental Abundances

Solar System

10 *r*-process rich halo stars

Lanthanide production in GW170817: "red" kilonova

Cowperthwaite et al (ApJL 2017)

Kasen et al (Nature 2017)

r-process Sensitivity to Mass Model and Fission Yields

- 10 mass models: DZ33, FRDM95, FRDM12, WS3, KTUY, HFB17, HFB21, HFB24, SLY4, UNEDF0
- N-rich dynamical ejecta conditions: Cold (Just 2015), Reheating (Mendoza-Temis 2015)

Côté et al (2017)

Measured Decay Rates and Masses

NUBASE 2016

 β -decay, α -decay, and spontaneous fission

AME 2016 / Jyväskylä / CPT at CARIBU

Dependence on the Fission Fragment Distribution

Peak Formation with an MCMC Mass Solution

Peak Formation with an MCMC Mass Solution

Preliminary Results

- Astrophysical trajectory: n-rich NSM dynamical ejecta with nuclear reheating
- 50 independent MCMC runs complete

Vassh et al (in preparation)

29

