Quantifying Errors from Chiral Effective Field Theory

Jordan Melendez1 \quad Dick Furnstahl1 \quad Daniel Phillips2 \quad Matt Pratola1 \quad Sarah Wesolowski3

October 11, 2018

1The Ohio State University
2Ohio University
3Salisbury University

Physical Motivation
Scales in Physics

Grav. force (short distances):

\[F = -mg \]
Grav. force (short distances):

\[F = -mg \]

Grav. force (large distances):

\[F = -\frac{GMm}{r^2} \]

The laws look quite different!
Scales in Physics

Grav. force (short distances):

\[F = -mg \]

Grav. force (large distances):

\[F = -\frac{GMm}{r^2} \]

The laws look quite different!

Connected via series expansion about radius of Earth \(R \):

\[F \approx -mg + 2mg \left(\frac{r - R}{R} \right) - 3mg \left(\frac{r - R}{R} \right)^2 + \mathcal{O} \left(\left(\frac{r - R}{R} \right)^3 \right) \]
Scales in Physics

Grav. force (short distances):

$$F = -mg$$

Grav. force (large distances):

$$F = \frac{GMm}{r^2}$$

The laws look quite different!

Can fit unknown parameters to data \Rightarrow inverse problem!

$$F \approx a_0 + a_1 \left(\frac{r - R}{R} \right) + a_2 \left(\frac{r - R}{R} \right)^2 + \mathcal{O} \left[\left(\frac{r - R}{R} \right)^3 \right]$$
Scales in Physics

Grav. force (short distances):
\[F = -mg \]

Grav. force (large distances):
\[F = \frac{GMm}{r^2} \]

The laws look quite different!

Use prior info from physics:

\[F \approx mg \left\{ a'_0 + a'_1 \left(\frac{r - R}{R} \right) + a'_2 \left(\frac{r - R}{R} \right)^2 + O \left[\left(\frac{r - R}{R} \right)^3 \right] \right\} \]
Scales in Physics

Grav. force (short distances):

\[F = -mg \]

Grav. force (large distances):

\[F = \frac{GMm}{r^2} \]

The laws look quite different!

Propagate full uncertainty

\[
F \approx mg \left\{ a'_0 + a'_1 \left(\frac{r - R}{R} \right) + a'_2 \left(\frac{r - R}{R} \right)^2 + \mathcal{O} \left(\left(\frac{r - R}{R} \right)^3 \right) \right\}
\]
• There is interesting physics at all scales
Predictions in Low-Energy Nuclear Physics

- There is interesting physics at all scales
- Nuclear physics spans lengths from $10^{-15} - 10^9$ m
• There is interesting physics at all scales
• Nuclear physics spans lengths from 10^{-15}–10^9 m
• Fine details at one level of analysis do not affect the physics at a coarser level of analysis
• There is interesting physics at all scales
• Nuclear physics spans lengths from $10^{-15} - 10^9$ m
• Fine details at one level of analysis do not affect the physics at a coarser level of analysis
• Start simple → add corrections to reach desired precision.
Chiral EFT

<table>
<thead>
<tr>
<th></th>
<th>NN force</th>
<th>3N force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>N^2LO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- An expansion in the nuclear force
- Ordered by increasing factors of small parameter Q
- Truncation \rightarrow main source of uncertainty
- Force convergence \neq prediction convergence
- The debate on the “best” expansion is ongoing

We want to:

- Fit unknown parameters \vec{a}, or low-energy constants, with discrepancy δ
- Quantify uncertainty in predictions (aka observables)
- Test existing EFTs, uncover physics
Chiral EFT

<table>
<thead>
<tr>
<th>$N N$ force</th>
<th>$3N$ force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
</tr>
<tr>
<td>NLO</td>
<td></td>
</tr>
<tr>
<td>N^2LO</td>
<td></td>
</tr>
</tbody>
</table>

- An expansion in the nuclear force
- Ordered by increasing factors of small parameter Q
- Truncation \rightarrow main source of uncertainty
- Force convergence \neq prediction convergence
- The debate on the “best” expansion is ongoing

We want to

- Fit unknown parameters \vec{a}, or low-energy constants, with discrepancy δy_{th}
Chiral EFT

<table>
<thead>
<tr>
<th>NN force</th>
<th>$3N$ force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>$-$</td>
</tr>
<tr>
<td>NLO</td>
<td>$-$</td>
</tr>
<tr>
<td>N^2LO</td>
<td></td>
</tr>
</tbody>
</table>

• An expansion in the nuclear force
• Ordered by increasing factors of small parameter Q
• Truncation \rightarrow main source of uncertainty
• Force convergence \neq prediction convergence
• The debate on the “best” expansion is ongoing

We want to

• Fit unknown parameters \vec{a}, or low-energy constants, with discrepancy δy_{th}
• Quantify uncertainty in predictions (aka observables) y_{th}
Chiral EFT

<table>
<thead>
<tr>
<th></th>
<th>NN force</th>
<th>$3N$ force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>N^2LO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- An expansion in the nuclear force
- Ordered by increasing factors of small parameter Q
- Truncation \rightarrow main source of uncertainty
- Force convergence \neq prediction convergence
- The debate on the “best” expansion is ongoing

We want to

- Fit unknown parameters \vec{a}, or low-energy constants, with discrepancy δy_{th}
- Quantify uncertainty in predictions (aka observables) y_{th}
- Test existing EFTs, uncover physics
$y_{\text{exp}}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{th}}(x) + \delta y_{\text{exp}}$
To theorists, magic

\[y_{\text{exp}}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{th}}(x) + \delta y_{\text{exp}} \]

Parameters

Discrepancy
To theorists, magic

Parameters

Discrepancy

Can we build this?

Can we use it?

\[y_{\text{exp}}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{exp}} \]
To theorists, magic

Parameters

Discrepancy

Can we build this?

Can we use it?

5

rigorous fit

\[y_{\text{exp}}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{th}}(x) + \delta y_{\text{exp}} \]
\[y_{\exp}(x) = y_{\text{th}}(x, \bar{a}) + \delta y_{\text{th}}(x) + \delta y_{\exp} \]
\[y_{\text{exp}}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{th}}(x) + \delta y_{\text{exp}} \]

Can we build this?
Can we use it?
• Theoretical predictions could look like the following

\[\Delta y_n = y_{\text{ref}} c_n Q_n \{ y_0 \} \]
Toy Predictions

• Theoretical predictions could look like the following

\[
\Delta y_n = y_{\text{ref}} c_n Q_n \{ y_0, y_1 \}
\]

\[
\begin{align*}
0:00 & \quad 0:25 & \quad 0:50 & \quad 0:75 & \quad 1:00 \\
\end{align*}
\]

Predictions

\[y_0 \rightarrow \text{LO} \]
\[y_1 \rightarrow \text{NLO} \]
• Theoretical predictions could look like the following

\[\Delta y_n = y_{\text{ref}} c_n Q_n \]

\[\{y_0, y_1, y_2\} \]

\[y_0 \rightarrow \text{LO} \]
\[y_1 \rightarrow \text{NLO} \]
\[y_2 \rightarrow \text{N}^2\text{LO} \]
Theoretical predictions could look like the following

\[\begin{align*}
\Delta y_n &= y_{\text{ref}} c_n Q_n \\
\end{align*} \]

\{y_0, y_1, y_2, y_3\}

\[y_0 \rightarrow \text{LO} \]
\[y_1 \rightarrow \text{NLO} \]
\[y_2 \rightarrow \text{N}^2\text{LO} \]
\[\vdots \]
\[y_k \rightarrow \text{N}^k\text{LO} \]
• Theoretical predictions could look like the following
• One can change variables for convenience/insight.

\[y_0 = y_0 \]
• Theoretical predictions could look like the following
• One can change variables for convenience/insight.

\[y_1 = y_0 + \Delta y_1 \]
• Theoretical predictions could look like the following
• One can change variables for convenience/insight.

\[y_2 = y_0 + \Delta y_1 + \Delta y_2 \]
Theoretical predictions could look like the following.

One can change variables for convenience/insight.

\[\Delta y_n = y_{ref} c_n Q^n \]

\[y_3 = y_0 + \Delta y_1 + \Delta y_2 + \Delta y_3 \]
Toy Predictions

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
- \[\Delta y_n = y_{\text{ref}} c_n Q^n \]

\[y_0 = y_{\text{ref}} \left[c_0 Q^0 \right] \]
Toy Predictions

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
- \(\Delta y_n = y_{ref} c_n Q^n \)

\[
y_1 = y_{ref} \left[c_0 Q^0 + c_1 Q^1 \right]
\]

![Graphs showing predictions, differences in predictions, and prediction coefficients.](image)
• Theoretical predictions could look like the following
• One can change variables for convenience/insight.
• $\Delta y_n = y_{\text{ref}} c_n Q^n$

$$y_2 = y_{\text{ref}} \left[c_0 Q^0 + c_1 Q^1 + c_2 Q^2 \right]$$
Toy Predictions

- Theoretical predictions could look like the following
- One can change variables for convenience/insight.
- \[\Delta y_n = y_{ref} c_n Q^n \]

 \[y_3 = y_{ref} \left[c_0 Q^0 + c_1 Q^1 + c_2 Q^2 + c_3 Q^3 \right] \]
Coefficients from NN scattering look like our toy model!
Statistical Model
The Hierarchical Model

• Decompose prediction

\[y_k = y_0 + \sum_{n=1}^{k} \Delta y_n \]
The Hierarchical Model

- Decompose prediction

\[y_k = y_0 + \sum_{n=1}^{k} \Delta y_n \]
\[= y_{\text{ref}} \sum_{n=0}^{k} c_n Q^n \]
The Hierarchical Model

\[y_k = y_0 + \sum_{n=1}^{k} \Delta y_n = y_{\text{ref}} \sum_{n=0}^{k} c_n Q^n \]

- Decompose prediction
- Put priors on \(c_n \) (and \(Q \))

\[\text{pr}(c_n | \theta)^{\text{iid}} \sim \mathcal{GP}(\mu, \sigma^2 R_{\ell}) \]
The Hierarchical Model

- Decompose prediction
 \[y_k = y_0 + \sum_{n=1}^{k} \Delta y_n = y_{\text{ref}} \sum_{n=0}^{k} c_n Q^n \]

- Put priors on \(c_n \) (and \(Q \))
 \[\text{pr}(c_n | \theta) \sim \mathcal{GP}(\mu, \sigma^2 R_\ell) \]

- Learn \(\theta \) and \(Q \)
The Hierarchical Model

Hyperparameters

• Decompose prediction

\[y_k = y_0 + \sum_{n=1}^{k} \Delta y_n \]
\[= y_{\text{ref}} \sum_{n=0}^{k} c_n Q^n \]

• Put priors on \(c_n \) (and \(Q \))

\[\text{pr}(c_n | \theta) \overset{\text{iid}}{\sim} \mathcal{GP}(\mu, \sigma^2 R_{\ell}) \]

• Learn \(\theta \) and \(Q \)

• Predict \(\text{pr}(y | \mathcal{D}) \)
Gaussian Process Priors on Observable Coefficients

\[c_n | \theta \sim \mathcal{GP}(\mu, \sigma^2 R_{\ell}) \]
Gaussian Process Priors on Observable Coefficients

\[c_n \mid \theta \sim \mathcal{GP}(\mu, \sigma^2 R_{\ell}) \]

Conjugate priors:

\[\mu \mid \sigma^2 \sim \mathcal{N}(m, \sigma^2 V) \]
\[\sigma^2 \sim \text{IG}(a, b) \]
Model Building

Main equation

\[y_k = y_{ref} \sum_{n=0}^{k} c_n Q^n \]

\[c_n \equiv \frac{y_n - y_{n-1}}{y_{ref} Q^n} \]

Predictions

Prediction Coefficients

\[x \]

\[y \]

\[c \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \]

Predictions

Prediction Coefficients

\[x \]

\[y \]

\[c \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \]
Model Building

Main equation

\[y_k = y_{ref} \sum_{n=0}^{k} c_n Q^n \]

\[c_n \equiv \frac{y_n - y_{n-1}}{y_{ref}Q^n} \]

Best Prediction

\[y_3 \]

Prediction Coefficients

\[c_0 \]
\[c_1 \]
\[c_2 \]
\[c_3 \]

\[pr(c_n) \]
Model Building

Main equation

\[y = y_{\text{ref}} \sum_{n=0}^{\infty} c_n Q^n \]

\[c_n \equiv \frac{y_n - y_{n-1}}{y_{\text{ref}} Q^n} \]

Full Prediction

Higher Order Coefficients
Model Building

Main equation

\[y = y_{ref} \sum_{n=0}^{\infty} c_n Q^n \]

\[c_n \equiv \frac{y_n - y_{n-1}}{y_{ref} Q^n} \]

Full Prediction

Higher Order Coefficients

\(pr(y) \)

\(pr(c_n) \)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

pr(y)

pr(c_n)
Model Building

Main equation

\[y = y_{\text{ref}} \sum_{n=0}^{\infty} c_n Q^n \]

\[c_n \equiv \frac{y_n - y_{n-1}}{y_{\text{ref}} Q^n} \]

Full Prediction

Higher Order Coefficients
Discrepancy Distribution

Remember the goal:

\[y_{\exp}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{th}}(x) + \delta y_{\exp} \]
Discrepancy Distribution

Remember the goal:

\[y_{\text{exp}}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{th}}(x) + \delta y_{\text{exp}} \]

Our convergence assumptions

\[\text{pr}(c_n | \theta) \overset{\text{iid}}{=} \mathcal{G}\mathcal{P}(\mu, \sigma^2 R) \]

\[\delta y_{\text{th}}(x) = y_{\text{ref}} \sum_{n=k+1}^{\infty} c_n Q^n \]
Discrepancy Distribution

Remember the goal:

\[y_{\text{exp}}(x) = y_{\text{th}}(x, \tilde{a}) + \delta y_{\text{th}}(x) + \delta y_{\exp} \]

Our convergence assumptions

\[\text{pr}(c_n | \theta) \overset{\text{iid}}{=} \mathcal{GP}(\mu, \sigma^2 R_\ell) \]

\[\delta y_{\text{th}}(x) = y_{\text{ref}} \sum_{n=k+1}^{\infty} c_n Q^n \]

Gaussian sum rules

\[a\mathcal{N}(\mu_1, \Sigma_1) + b\mathcal{N}(\mu_2, \Sigma_2) = \mathcal{N}(a\mu_1 + b\mu_2, a^2\Sigma_1 + b^2\Sigma_2) \]
Discrepancy Distribution

Remember the goal:

\[y_{\text{exp}}(x) = y_{\text{th}}(x, \vec{a}) + \delta y_{\text{th}}(x) + \delta y_{\text{exp}} \]

Our convergence assumptions

\[\text{pr}(c_n | \theta) \overset{\text{iid}}{=} \mathcal{GP}(\mu, \sigma^2 R_\ell) \]

\[\delta y_{\text{th}}(x) = y_{\text{ref}} \sum_{n=k+1}^{\infty} c_n Q^n \]

Gaussian sum rules

\[a \mathcal{N}(\mu_1, \Sigma_1) + b \mathcal{N}(\mu_2, \Sigma_2) = \mathcal{N}(a\mu_1 + b\mu_2, a^2\Sigma_1 + b^2\Sigma_2) \]

Discrepancy Distribution

\[\text{pr}(\delta y_{\text{th}} | \theta) = \mathcal{GP}(\mu_{\text{th}}, \Sigma_{\text{th}}) = \mathcal{GP} \left(\frac{\mu Q^{k+1}}{1 - Q}, y_{\text{ref}}^2 \frac{\sigma^2 Q^{2(k+1)}}{1 - Q^2} R_\ell \right) \]
Implications for EFT Fitters

Standard χ^2

$$\sum_i \frac{[y_{\text{exp},i} - y_{\text{th},i}(\vec{a})]^2}{\sigma_{\text{exp}}^2} = \sum_i \frac{r(x_i, \vec{a})^2}{\sigma_{\text{exp}}^2}$$

- Gaussian process correlations propagate via Σ_{th} matrix (computed once!)
- Different correlation assumptions \rightarrow different results!
Implications for EFT Fitters

\[\chi^2_{\text{mod}}(\bar{a}) = \bar{r}^T(\bar{a})(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1}\bar{r}(\bar{a}) \]
Implications for EFT Fitters

Standard χ^2

$$\sum_i \frac{[y_{\exp,i} - y_{\th,i}(\vec{a})]^2}{\sigma^2_{\exp}} = \sum_i \frac{r(x_i, \vec{a})^2}{\sigma^2_{\exp}}$$

Prediction

$$y_{\exp}(x) \approx y_{\th}(x, \vec{a})$$

χ^2 + Theory Error

$$\chi^2_{\text{mod}}(\vec{a}) = \vec{r}^\top(\vec{a})(\Sigma_{\th} + \Sigma_{\exp})^{-1}\vec{r}(\vec{a})$$
Implications for EFT Fitters

Standard χ^2

$$\sum_i \frac{(y_{\text{exp},i} - y_{\text{th},i}(\vec{a}))^2}{\sigma_{\text{exp}}^2} = \sum_i \frac{r(x_i, \vec{a})^2}{\sigma_{\text{exp}}^2}$$

χ^2 + Theory Error

$$\chi^2_{\text{mod}}(\vec{a}) = \vec{r}^\top(\vec{a})(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1}\vec{r}(\vec{a})$$

Prediction

$$y_{\text{exp}}(x) \approx y_{\text{th}}(x, \vec{a})$$

Prediction + Theory Error

$$p_r(y_{\text{exp}}) = \mathcal{N}[y_{\text{th}}(x, \vec{a}) + \mu_{\text{th}}, \Sigma_{\text{th}}]$$
Implications for EFT Fitters

Standard χ^2

$$\sum_i \frac{[y_{\text{exp},i} - y_{\text{th},i}(\vec{a})]^2}{\sigma^2_{\text{exp}}} = \sum_i \frac{r(x_i, \vec{a})^2}{\sigma^2_{\text{exp}}}$$

Prediction

$$y_{\text{exp}}(x) \approx y_{\text{th}}(x, \vec{a})$$

$\chi^2 +$ Theory Error

$$\chi^2_{\text{mod}}(\vec{a}) = \vec{r}^\top(\vec{a})(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1}\vec{r}(\vec{a})$$

Prediction + Theory Error

$$\text{pr}(y_{\text{exp}}) = \mathcal{N}[y_{\text{th}}(x, \vec{a}) + \mu_{\text{th}}, \Sigma_{\text{th}}]$$

- Gaussian process correlations propagate via Σ_{th} matrix (computed once!)
Implications for EFT Fitters

Standard χ^2

$$\sum_i \frac{[y_{\exp,i} - y_{\text{th},i}(\vec{a})]^2}{\sigma_{\text{exp}}^2} = \sum_i \frac{r(x_i, \vec{a})^2}{\sigma_{\text{exp}}^2}$$

Prediction

$$y_{\exp}(x) \approx y_{\text{th}}(x, \vec{a})$$

$\chi^2 +$ Theory Error

$$\chi^2_{\text{mod}}(\vec{a}) = \vec{r}^\top(\vec{a})(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1}\vec{r}(\vec{a})$$

Prediction + Theory Error

$$\text{pr}(y_{\exp}) = \mathcal{N}[y_{\text{th}}(x, \vec{a}) + \mu_{\text{th}}, \Sigma_{\text{th}}]$$

- Gaussian process correlations propagate via Σ_{th} matrix (computed once!)
- Different correlation assumptions \rightarrow different results!
What You Get for Free: Max Energy Insensitivity

- y axis: posterior median ± 1σ
- x axis: max energy of data in fit

Q, and hence δy_{th}, grows with energy

$$\delta y_{th} = y_{ref} - \sum_{n=k+1} Q_n$$

This weights high energy data less!

Stabilizes LEC fit as a function of E

Correlation assumptions can lead to different results
What You Get for Free: Max Energy Insensitivity

- y axis: posterior median ± 1σ
- x axis: max energy of data in fit
- Q, and hence δy_{th}, grows with energy

$$\delta y_{th} = y_{ref} \sum_{n=k+1}^{k_{max}} c_n Q^n$$

- This weights high energy data less!
- Stabilizes LEC fit as a function of E
What You Get for Free: Max Energy Insensitivity

- y axis: posterior median ± 1σ
- x axis: max energy of data in fit
- Q, and hence δy_{th}, grows with energy

$$\delta y_{th} = y_{ref} \sum_{n=k+1}^{k_{\text{max}}} c_n Q^n$$

- This weights high energy data less!
- Stabilizes LEC fit as a function of E
- Correlation assumptions can lead to different results
Quantifying Truncation Uncertainty

Conditional Distributions

0.00 0.25 0.50 0.75 1.00
X

0.00 0.25 0.50 0.75 1.00
X

0.00 0.25 0.50 0.75 1.00
X

0.00 0.25 0.50 0.75 1.00
X
Quantifying Truncation Uncertainty

Conditional Distributions

Conditional + Error
This model permits mostly analytic calculation of evidence

\[p_r(D \mid \ell, Q) = \frac{\Gamma(a^*)}{\Gamma(a)} \frac{b^a}{(b^*)^{a^*}} \sqrt{\frac{|V^*|}{|V|}} \frac{|2\pi R_\ell|^{-(k+1)/2}}{|Q|^{k(k+1)/2}} \]
This model permits mostly analytic calculation of evidence

\[
\text{pr}(\mathcal{D} \mid \ell, Q) = \frac{\Gamma(a^*)}{\Gamma(a)} \frac{b^a}{(b^*)^a^*} \sqrt{\frac{|V^*|}{|V|}} \frac{|2\pi R\ell|^{-(k+1)/2}}{|Q|^{k(k+1)/2}}
\]

Important for model comparison and for posteriors:

\[
\text{pr}(\ell \mid \mathcal{D}, Q) \propto \text{pr}(\mathcal{D} \mid \ell, Q) \text{pr}(\ell)
\]

\[
\text{pr}(Q \mid \mathcal{D}, \ell) \propto \text{pr}(\mathcal{D} \mid \ell, Q) \text{pr}(Q)
\]
This model permits mostly analytic calculation of evidence

\[\text{pr}(D \mid \ell, Q) = \frac{\Gamma(a^*)}{\Gamma(a)} \frac{b^a}{(b^*)^{a^*}} \sqrt{|V^*|} \frac{|2\pi R_{\ell}|^{-(k+1)/2}}{|V| |Q|^{k(k+1)/2}} \]

Important for model comparison and for posteriors:

\[\text{pr}(\ell \mid D, Q) \propto \text{pr}(D \mid \ell, Q) \text{pr}(\ell) \]
\[\text{pr}(Q \mid D, \ell) \propto \text{pr}(D \mid \ell, Q) \text{pr}(Q) \]
This model permits mostly analytic calculation of evidence

\[
\text{pr}(\mathcal{D} | \ell, Q) = \frac{\Gamma(a^*)}{\Gamma(a)} \frac{b^a}{(b^*)^a^*} \sqrt{|V^*|} \frac{2\pi R_\ell}{|Q|^{(k+1)/2}} \frac{|V|}{|Q|^{k(k+1)/2}}
\]

Important for model comparison and for posteriors:

\[
\text{pr}(\ell | \mathcal{D}, Q) \propto \text{pr}(\mathcal{D} | \ell, Q) \text{pr}(\ell)
\]

\[
\text{pr}(Q | \mathcal{D}, \ell) \propto \text{pr}(\mathcal{D} | \ell, Q) \text{pr}(Q)
\]

Here, \(Q \propto \frac{1}{\Lambda_b} \)
Model Checking
As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.

— Albert Einstein
Model Checking

As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.

— Albert Einstein

Does our model refer to reality? How can we check?
As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.

— Albert Einstein

Does our model refer to reality? How can we check?

Assumptions
1. \(c_n \) are iid stationary GPs

Tests
1. Compare posteriors from individual curves & domains
As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.

— Albert Einstein

Does our model refer to reality? How can we check?

Assumptions

1. c_n are iid stationary GPs
2. Error bands have statistical meaning

Tests

1. Compare posteriors from individual curves & domains
2. Credible interval diagnostic
As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.
— Albert Einstein

Does our model refer to reality? How can we check?

Assumptions
1. c_n are iid stationary GPs
2. Error bands have statistical meaning
3. Squared exp. kernel $\rightarrow R_\ell$

Tests
1. Compare posteriors from individual curves & domains
2. Credible interval diagnostic
3. Variograms
As far as the laws of mathematics refer to reality, they are not certain, and as far as they are certain, they do not refer to reality.

— Albert Einstein

Does our model refer to reality? How can we check?

Assumptions
1. c_n are iid stationary GPs
2. Error bands have statistical meaning
3. Squared exp. kernel $\rightarrow R_\ell$

Tests
1. Compare posteriors from individual curves & domains
2. Credible interval diagnostic
3. Variograms
Takeaway Points

Truncation Model

• Replaces χ^2 with its matrix analog, very easy!
• Full error can be propagated
• Reduces E_{max} sensitivity and bias of LEC posterior, but need realistic correlations!
Takeaway Points

Truncation Model

- Replaces χ^2 with its matrix analog, very easy!

$$\chi^2_{\text{mod}}(\vec{a}) = \vec{r}^T(\vec{a})(\Sigma_{\text{th}} + \Sigma_{\text{exp}})^{-1}\vec{r}(\vec{a})$$
Takeaway Points

Truncation Model

• Replaces χ^2 with its matrix analog, very easy!
• Full error can be propagated

$$\text{pr}(y_{\text{exp}}) = \mathcal{N}[y_{\text{th}}(x, \vec{a}) + \mu_{\text{th}}, \Sigma_{\text{th}}]$$
Takeaway Points

Truncation Model

- Replaces χ^2 with its matrix analog, very easy!
- Full error can be propagated
- Reduces E_{max} sensitivity and bias of LEC posterior, but need realistic correlations!
Takeaway Points

Truncation Model

- Replaces χ^2 with its matrix analog, very easy!
- Full error can be propagated
- Reduces E_{max} sensitivity and bias of LEC posterior, but need realistic correlations!
Takeaway Points

Truncation Model

• Replaces χ^2 with its matrix analog, very easy!
• Full error can be propagated
• Reduces E_{max} sensitivity and bias of LEC posterior, but need realistic correlations!

Todo List

• Fit EFT+GP model with full truncation + parameter uncertainty
Takeaway Points

Truncation Model

• Replaces χ^2 with its matrix analog, very easy!
• Full error can be propagated
• Reduces E_{max} sensitivity and bias of LEC posterior, but need realistic correlations!

Todo List

• Fit EFT+GP model with full truncation + parameter uncertainty
• Formalize/test model checking techniques
Takeaway Points

Truncation Model
- Replaces χ^2 with its matrix analog, very easy!
- Full error can be propagated
- Reduces E_{max} sensitivity and bias of LEC posterior, but need realistic correlations!

Todo List
- Fit EFT+GP model with full truncation + parameter uncertainty
- Formalize/test model checking techniques
- EFTs: pass or fail?
Takeaway Points

Truncation Model

- Replaces χ^2 with its matrix analog, very easy!
- Full error can be propagated
- Reduces E_{max} sensitivity and bias of LEC posterior, but need realistic correlations!

Todo List

- Fit EFT+GP model with full truncation + parameter uncertainty
- Formalize/test model checking techniques
- EFTs: pass or fail?

Suggestions welcome!
Thank you!

Uncorrelated Posteriors

Assumes that the variance of the c_n is independent at each point