

Nuclear Physics as Precision Science

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown > \triangleright O

CONTENTS

- Introduction: The BIG picture
- A brief introduction to nuclear interactions
- Basics of nuclear lattice simulations
- Results from nuclear lattice simulations
- Ab initio alpha-alpha scattering
- New insights into nuclear clustering
- Fine-tunings and the multiverse
- Summary & outlook

 $\cdot \circ \triangleleft < \land \lor >$

The BIG Picture

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < / $abla > b = \bullet$

WHY NUCLEAR PHYSICS?

The matter we are made off **Universe content** visible matter 5% dark matter 27% The last frontier of the SM 134 Quarks dark energy 68% Forces S b d Proton Higgs g M e V = 4 e τ μ Access to the Multiverse 50 Ve Leptons 82 **B** = 0 2.0 \Rightarrow Precision mandatory Ξ 2 Neutron Number N

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < / ∇

AB INITIO NUCLEAR STRUCTURE and REACTIONS

© National Nuclear Data Center

• Nuclear reactions: Scattering processes relevant for nuclear astrophysics

- \star alpha-particle scattering: ⁴He + ⁴He \rightarrow ⁴He + ⁴He
- \star triple-alpha reaction: ⁴He + ⁴He + ⁴He \rightarrow ¹²C + γ
- \star alpha-capture on carbon: ${}^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O} + \gamma$

 $\cdot \circ \triangleleft < \land \lor >$

THE NUCLEAR LANDSCAPE: AIMS & METHODS

- Theoretical methods:
- Lattice QCD: *A* = 0, 1, 2, ...
- NCSM, Faddeev-Yakubowsky, GFMC, ... : A = 3 16
- coupled cluster, . . .: A = 16 100
- density functional theory, . . .: $A \ge 100$
- Chiral EFT:
- provides accurate 2N, 3N and 4N forces
- successfully applied in light nuclei with A = 2, 3, 4
- combine with standard methods for larger A (various groups world-wide)
- combine with simulations to get to larger A

 \Rightarrow Nuclear Lattice Effective Field Theory

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown \lor \triangleright

A brief introduction to nuclear interactions

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown >

NUCLEAR PHSICS: A PRIMER

- Nuclei are self-bound system of fermions (protons & neutrons)
- Bound by the strong force
- Repulsion also from the **Coulomb** force
- Non-relativistic system:

• Nuclear Hamiltonian:

$$H_{
m nuclear} = T + V$$

$$V = V_{\rm NN} + V_{\rm NNN} + \dots$$

- Dominant two-nucleon potential $V_{\rm NN}$, but small three-nucleon force $V_{\rm NNN}$ is required
- \bullet Nuclear binding energies \ll nuclear masses
- The nuclear Hamiltonian can be **systematically** analyzed using the **symmetries** of the strong interactions \rightarrow EFT

Weinberg 1990, 1991

EFFECTIVE FIELD THEORY in a NUTSHELL

Weinberg, Gasser, Leutwyler, ...

• Rules to construct an EFT:

- *scale separation* what is low, what is high?
- *active degrees of freedom* what are the building blocks?
- *symmetries* how are the interactions constrained by symmetries?
- *power counting* how to organize the expansion in low over high?

• QCD with light quarks (up, down):

- \rightarrow low scale $\sim M_{\pi} \ll$ high scale $\sim M_{
 ho}$
- \rightarrow DOFs: pions = Goldstone bosons, nucleons, ...
- \rightarrow broken chiral symmetry, PCT, Lorentz, ...

ightarrow Amp $\sim q^{
u}$, $u = 4 - N + 2(L-C) + \sum_i V_i \Delta_i$

NUCLEAR FORCES in CHIRAL NUCLEAR EFT

- expansion of the potential in powers of Q [small parameter]: $\{p/\Lambda_b, M_\pi/\Lambda_b\}$
- explains observed hierarchy of the nuclear forces
- extremely successful in few-nucleon systems

Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown > \triangleright •

RESULTS at N3LO

• np scattering

• pol. transfer in pd scattering

• nd scattering

Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 • O < < \land \bigtriangledown \lor \triangleright \triangleright •

PHASE SHIFTS at N4LO

• N4LO analysis, better error estimates

Epelbaum, Krebs, UGM, Phys. Rev. Lett. **115** (2015) 122301 Entem, Kaiser, Machleidt, Nosyk, Phys. Rev. **C 91** (2015) 014002 Reinert, Krebs, Epelbaum, EPJ **A 54** (2018) 86

• Precision phase shifts with small uncertainties up to $E_{
m lab}=300\,{
m MeV}$

NLO N2LO N3LO N4LO

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown > \triangleright •

NUCLEI at N2LO

• N2LO analysis, 2NFs + 3NFs consistently included, NCSM Epelbaum et al. [LENPIC], Phys. Rev. **C** (2019) in print [arXiv:1807.02848]

 \rightarrow quite reasonable, radii somewhat underpredicted

 \rightarrow similar to results other groups (TUD, ORNL, Saclay, Sussex, ...)

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < / ∇ > \triangleright (

• excitation energies

Ground state energies

Basics of nuclear lattice simulations

for an easy intro, see: UGM, Nucl. Phys. News **24** (2014) 11 for an early review, see: D. Lee, Prog. Part. Nucl. Phys. **63** (2009) 117 upcoming textbook, see: T. Lähde, UGM, Springer Lecture Notes in Physics

NUCLEAR LATTICE EFFECTIVE FIELD THEORY

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 314\,{
m MeV}\,[{
m UV}~{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

ullet physics independent of the lattice spacing for $a=1\dots 2$ fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 • O < < < < > > > • •

TRANSFER MATRIX METHOD

- Correlation-function for A nucleons: $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A(au) = -rac{d}{d au}\,\ln Z_A(au)$$

 \rightarrow ground state: $E_A^0 = \lim_{T \to \infty} E_A(\tau)$

• Exp. value of any normal–ordered operator ${\cal O}$

$$Z_A^{\mathcal{O}} = raket{\Psi_A} \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \ket{\Psi_A}$$

$$\lim_{ au o \infty} \, rac{Z_A^{\mathcal{O}}(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A
angle \, ,$$

L

а

Euclidean time

 $\cdot \circ \triangleleft < \land \lor >$

Τf

τί

Euclidean time

CONFIGURATIONS

⇒ all *possible* configurations are sampled ⇒ preparation of *all possible* initial/final states ⇒ *clustering* emerges *naturally*

AUXILIARY FIELD METHOD

• Represent interactions by auxiliary fields:

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown \lor \triangleright \triangleright •

COMPUTATIONAL EQUIPMENT

- Past = JUQUEEN (BlueGene/Q)
- Present = JUWELS (modular system) + SUMMIT + ...

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown \lor \lor \lor

Lattice: some results

Elhatisari, Epelbaum, Krebs, Lähde, Lee, Luu, UGM, Rupak + post-docs + students

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < < < > > > > <

FIXING PARAMETERS and FIRST RESULTS

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 104 (2010) 142501; Eur. Phys. J. A 45 (2010) 335; ...

some groundstate energies and differences [NNLO, 11+2 LECs]

• promising results \Rightarrow uncertainties down to the 1% level

• excited states more difficult \Rightarrow projection MC method + triangulation

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown > \triangleright •

BREAKTHROUGH: SPECTRUM of CARBON-12

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 106 (2011) 192501 Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. 109 (2012) 252501

• After 8 • 10⁶ hrs JUGENE/JUQUEEN (and "some" human work)

 $\cdot \circ \triangleleft < \land \lor >$

A SHORT HISTORY of the HOYLE STATE

• Heavy element generation in massive stars: triple- α process

Bethe 1938, Öpik 1952, Salpeter 1952, Hoyle 1954, ...

 ${}^{4}\text{He} + {}^{4}\text{He} \rightleftharpoons {}^{8}\text{Be}$ ${}^{8}\text{Be} + {}^{4}\text{He} \rightleftharpoons {}^{12}\text{C}^{*} \rightarrow {}^{12}\text{C} + \gamma$ ${}^{12}\text{C} + {}^{4}\text{He} \rightleftharpoons {}^{16}\text{O} + \gamma$

• Hoyle's contribution: calculation of the relative abundances of ⁴He, ¹²C and ¹⁶O \Rightarrow need a resonance close to the ⁸Be + ⁴He threshold at $E_R \simeq 0.37$ MeV \Rightarrow this corresponds to a $J^P = 0^+$ excited state 7.7 MeV above the g.s.

- a corresponding state was experimentally confirmed at Caltech at $E E(g.s.) = 7.653 \pm 0.008$ MeV Dunbar et al. 1953, Cook et al. 1957
- still on-going experimental activity, e.g. EM transitions at SDALINAC
 M. Chernykh et al., Phys. Rev. Lett. 98 (2007) 032501
- side remark: relevance to the anthropic principle?

H. Kragh, An anthropic myth: Fred Hoyle's carbon-12 resonance level, Arch. Hist. Exact Sci. 64 (2010) 721

RESULTS from LATTICE NUCLEAR EFT

- □ Lattice EFT calculations for A=3,4,6,12 nuclei, PRL 104 (2010) 142501
- □ Ab initio calculation of the Hoyle state, PRL 106 (2011) 192501
- □ Structure and rotations of the Hoyle state, PRL 109 (2012) 142501
- Validity of Carbon-Based Life as a Function of the Light Quark Mass PRL 110 (2013) 142501
- \Box Ab initio calculation of the Spectrum and Structure of ¹⁶O, PRL 112 (2014) 142501
- □ Ab initio alpha-alpha scattering, Nature 528 (2015) 111
- □ Nuclear Binding Near a Quantum Phase Transition, PRL 117 (2016) 132501
- Ab initio calculations of the isotopic dependence of nuclear clustering, PRL 119 (2017) 222505

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < / V

Ab initio calculation of α - α scattering

Elhatisari, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, UGM, Nature **528** (2015) 111 [arXiv:1506.03513]

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < / ∇ > >

NUCLEUS–NUCLEUS SCATTERING on the LATTICE

- Processes involving α-particles and α-type nuclei comprise a major part of stellar nucleosynthesis, and control the production of certain elements in stars
- Ab initio calculations of scattering and reactions suffer from computational scaling with the number of nucleons in the clusters

Lattice EFT computational scaling $\Rightarrow (A_1 + A_2)^2$

Rupak, Lee, Phys. Rev. Lett. **111** (2013) 032502 Pine, Lee, Rupak, Eur. Phys. J. A **49** (2013) 151 Elhatisari, Lee, Phys. Rev. C **90** (2014) 064001 Elhatisari et al., Phys.Rev. C **92** (2015) 054612 Elhatisari, Lee, UGM, Rupak, Eur. Phys. J. A **52** (2016) 174

ADIABATIC PROJECTION METHOD

• Basic idea to treat scattering and inelastic reactions: split the problem into two parts

First part:

use Euclidean time projection to construct an *ab initio* low-energy cluster Hamiltonian, called the **adiabatic Hamiltonian**

Second part:

compute the two-cluster scattering phase shifts or reaction amplitudes using the adiabatic Hamiltonian

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019

 $\cdot \circ \triangleleft < \land \lor >$

ADIABATIC PROJECTION METHOD II

- Construct a low-energy effective theory for clusters
- Use initial states parameterized by the relative separation between clusters

 $|ec{R}
angle = \sum_{ec{r}} |ec{r} + ec{R}
angle \otimes ec{r}$

 project them in Euclidean time with the chiral EFT Hamiltonian H

$$ert ec{R}
angle_{ au} = \exp(-H au) ert ec{R}
angle$$

- \rightarrow "dressed cluster states" (polarization, deformation, Pauli)
- Adiabatic Hamiltonian (requires norm matrices)

$$[H_{ au}]_{ec{R}ec{R}'}={}_{ au}\langleec{R}|H|ec{R}'
angle_{ au}$$

ADIABATIC HAMILTONIAN plus COULOMB

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 \cdot O \triangleleft C \wedge ∇ > \triangleright \bullet

PHASE SHIFTS

• Same NNLO Lagrangian as used for the study of ¹²C and ¹⁶O

Data: Afzal et al., Rev. Mod. Phys. 41 (1969) 247

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 \cdot O \leq \wedge ∇ > \triangleright \bullet

New insights into nuclear clustering

Elhatisari, Epelbaum, Krebs, Lähde, Lee, Li, Lu, UGM, Rupak Phys. Rev. Lett. **119** (2017) 222505 [arXiv:1702.05177]

for a review: Freer, Horiuchi, Kanada-En'yo, Lee, UGM Rev. Mod. Phys. **90** (2018) 035004 [arXiv:1705.06192]

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 \cdot O \triangleleft C \wedge ∇ > D \bullet

CLUSTERING in NUCLEI

• Introduced theoretically by Wheeler already in 1937:

John Archibald Wheeler, "Molecular Viewpoints in Nuclear Structure," Physical Review **52** (1937) 1083

• many works since then... Ikeda, Horiuchi, Freer, Ring, Schuck, Röpke, Khan, Zhou, Iachello, ...

Zhou, Yao, Li, Ring, Meng (2015)

 \Rightarrow can we understand this phenomenon from *ab initio* calculations?

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < / abla > b

EARLIER RESULTS on NUCLEAR CLUSTERING

• Already a number of intriguing results on clustering:

Ab initio calculation of the spectrum and structure of ¹²C (esp. the Hoyle state) Ab initio calculation of the spectrum and structure of ¹⁶O Ground state energies of α -type nuclei up to ²⁸Si within 1% Ab initio calculation of α - α scattering Quantum phase transition from Bose gas of α 's to nuclear liquid for α -type nuclei

• However: when adding extra neutrons/protons, the precision quickly deteriorates due to sign oscillations

 New LO action with smeared SU(4) local+non-local symmetric contact interactions & smeared one-pion exchange

$$egin{aligned} a_{ ext{NL}}(ext{n}) &= a(ext{n}) + s_{ ext{NL}} \sum_{\langle ext{n'} ext{n}
angle} a(ext{n'}) \ a_{ ext{NL}}^{\dagger}(ext{n}) &= a^{\dagger}(ext{n}) + s_{ ext{NL}} \sum_{\langle ext{n'} ext{n}
angle} a^{\dagger}(ext{n'}) \end{aligned}$$

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown >

GROUND STATE ENERGIES

• Fit parameters to average NN S-wave scattering length and effective range and α - α S-wave scattering length

 \rightarrow predict g.s. energies of H, He, Be, C and O isotopes \rightarrow quite accurate (LO)

Λ

 ∇

PROBING NUCLEAR CLUSTERING

• Local densities on the lattice: $ho({
m n})$, $ho_p({
m n})$, $ho_n({
m n})$

• Probe of alpha clusters: $ho_4 = \sum_{n}:
ho^4(n)/4!:$

- Another probe for Z=N= even nuclei: $ho_3=\sum_{\mathrm{n}}:
 ho^3(\mathrm{n})/3!:$
- ρ_4 couples to the center of the α -cluster while ρ_3 gets contributions from a wider portion of the alpha-particle wave function
- Both ho_3 and ho_4 depend on the regulator, a, but not on the nucleus
- The ratios $\rho_3/\rho_{3,\alpha}$ and $\rho_4/\rho_{4,\alpha}$ free of short-distance ambiguities and model-independent
- $ho_3/
 ho_{3,lpha}$ measures the effective number of alpha-cluster N_lpha
- \Rightarrow Any deviation from N_{α} = integer measures the entanglement of the α -clusters in a given nucleus

PROBING NUCLEAR CLUSTERING

• ρ_3 -entanglement of the α -clusters:

$$\left(rac{\Delta^{
ho_3}_lpha}{N_lpha} = rac{
ho_3/
ho_{3,lpha}}{N_lpha} - 1
ight)$$

Nucleus	^{4,6,8} He	^{8,10,12,14} Be	12,14,16,18,20,22C	16,18,20,22,24,26
$\Delta_lpha^{ ho_3}/N_lpha$	0.00 - 0.03	0.20 - 0.35	0.25 - 0.50	0.50 - 0.75

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < \land \bigtriangledown \lor \triangleright \lor

PROBING NUCLEAR CLUSTERING

 The transition from cluster-like states in light systems to nuclear liquid-like states in heavier systems should not be viewed as a simple suppression of multi-nucleon short-distance correlations, but rather as an increasing *entanglement* of the nucleons involved in the multi-nucleon correlations.

PINHOLE ALGORITHM

- AFQMC calculations involve states that are superpositions of many different center-of-mass positions
- \rightarrow density distributions of nucleons can not be computed directly
- Insert a screen with pinholes with spin & isospin labels that allows nucleons with corresponding spin & isospin to pass = insertion of the A-body density op.:

$$egin{aligned} &
ho_{i_1,j_1,\cdots i_A,j_A}(\mathrm{n}_1,\cdots \mathrm{n}_A)\ &=:
ho_{i_1,j_1}(\mathrm{n}_1)\cdots
ho_{i_A,j_A}(\mathrm{n}_A): \end{aligned}$$

- MC sampling of the amplitude:
- Allows to measure proton and neutron distributions
- ullet Resolution scale $\sim a/A$ as cm position ${f r_{cm}}$ is an integer ${f n_{cm}}$ times a/A

PROTON and NEUTRON DENSITIES in CARBON

FORM FACTORS

- Fit charge distributions by a Wood-Saxon shape
 - \hookrightarrow get the form factor from the Fourier-transform (FT)
 - \hookrightarrow uncertainties from a direct FT of the lattice data

 \Rightarrow detailed structure studies become possible

Fine-tunings and the multiverse

UGM, Sci. Bull. **60** (2015) no.1, 43-54 Epelbaum, Krebs, Lähde, Lee, UGM, Phys. Rev. Lett. **110** (2013) 112502 Epelbaum, Krebs, Lähde, Lee, UGM, Eur. Phys. J. **A 49** (2013) 82

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 · O < < < < > > > >

The RELEVANT QUESTION

Date: Sat, 25 Dec 2010 20:03:42 -0600 From: Steven Weinberg (weinberg@zippy.ph.utexas.edu) To: Ulf-G. Meissner (meissner@hiskp.uni-bonn.de) Subject: Re: Hoyle state in 12C

Dear Professor Meissner,

Thanks for the colorful graph. It makes a nice Christmas card. But I have a detailed question. Suppose you calculate not only the energy of the Hoyle state in C12, but also of the ground states of He4 and Be8. How sensitive is the result that the energy of the Hoyle state is near the sum of the rest energies of He4 and Be8 to the parameters of the theory? I ask because I suspect that for a pretty broad range of parameters, the Hoyle state can be well represented as a nearly bound state of Be8 and He4.

All best,

Steve Weinberg

- How does the Hoyle state move relative to the ⁴He+⁸Be threshold, if we change the fundamental parameters of QCD+QED?
- not possible in nature, but on a high-performance computer!

NUCLEAR FORCES for VARYING QUARK MASSES

- Nuclear forces: Pion-exchange contributions & short-distance multi-N operators
- graphical representation of the quark mass dependence of the LO potential

• always use the Gell-Mann–Oakes–Renner relation: $\left[M_{\pi^{\pm}}^2
ight]$

$$M_{\pi^{\pm}}^2 \sim (m_u + m_d)
ight)$$

• fulfilled in QCD to better than 94%

Colangelo, Gasser, Leutwyler 2001

 \Rightarrow Quark mass dependence of hadron properties from lattice QCD, contact interaction require modeling \rightarrow challenge to lattice QCD

FINE-TUNING of FUNDAMENTAL PARAMETERS

Fig. courtesy Dean Lee

EARLIER STUDIES of the ANTHROPIC PRINCIPLE

• rate of the 3
$$lpha$$
-process: $r_{3lpha}\sim\Gamma_{\gamma}\,\exp\left(-rac{\Delta E_{h+b}}{kT}
ight)$

$$\Delta E_{h+b} = E^{\star}_{12} - 3E_{lpha} = 379.47(18) \, {
m keV}$$

• how much can ΔE_{h+b} be changed so that there is still enough ¹²C and ¹⁶O?

$$\Rightarrow \left| \delta | \Delta E_{h+b}
ight| \lesssim 100 \ {
m keV}$$

Oberhummer et al., Science **289** (2000) 88 Csoto et al., Nucl. Phys. A **688** (2001) 560 Schlattl et al., Astrophys. Space Sci. **291** (2004) 27 [Livio et al., Nature **340** (1989) 281]

<

<

Λ

 ∇

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 • O

FINE-TUNING: MONTE-CARLO ANALYSIS

Epelbaum, Krebs, Lähde, Lee, UGM, PRL 110 (2013) 112502

- ullet consider first QCD only ightarrow calculate $\partial\Delta E/\partial M_{\pi}$
- relevant quantities (energy differences)

$$^4 ext{He}$$
 + $^4 ext{He}$ \leftrightarrow $^8 ext{Be}$ \rightsquigarrow $\Delta E_b \equiv E_8 - 2E_4$

$$^4 ext{He} + {}^8 ext{Be}
ightarrow {}^{12} ext{C}^* \hspace{0.2cm} \sim \sim \hspace{0.2cm} \left[\Delta E_h^{} \equiv E_{12}^* - E_8^{} - E_4^{}
ight]$$

• energy differences depend on parameters of QCD (LO analysis)

$$E_i = E_i \bigg(M_\pi^{\text{OPE}}, m_N(M_\pi), g_{\pi N}(M_\pi), C_0(M_\pi), C_I(M_\pi) \bigg)$$

$$g_{\pi N} \equiv g_A^{}/(2F_\pi^{})$$

• QED in the same manner \rightarrow calculate $\partial \Delta E / \partial lpha_{
m EM}$

CORRELATIONS

• map $C_{0,I}(M_{\pi})$ onto $\bar{A}_{s,t} \equiv \partial a_{s,t}^{-1} / \partial M_{\pi} |_{M_{\pi}^{\mathrm{phys}}}$ [singlet/triplet scatt. length]

• vary the derivatives $\bar{A}_{s,t} \equiv \partial a_{s,t}^{-1} / \partial M_{\pi} |_{M_{\pi}^{\mathrm{phys}}}$ within $-1,\ldots,+1$:

• all fine-tunings in the triple-alpha process are *correlated*, as speculated Weinberg (2000)

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019 • O < < / ∇ > \triangleright •

THE END-OF-THE-WORLD PLOT

• $|\delta(\Delta E_{h+b})| < 100 \text{ keV} [ext{exp: 387 keV}]$

Oberhummer et al., Science (2000)

$$ightarrow \left| \left((0.571(14)ar{A}_s + 0.934(11)ar{A}_t - 0.069(6) ig) rac{\delta m_q}{m_q}
ight| < 0.0015
ight|$$

SUMMARY & OUTLOOK

- Chiral EFT for nuclear forces
 - \rightarrow precise framework for 2N and 3N forces with small uncertainties
 - \rightarrow can also be formulated at varying strong and em forces
- Nuclear lattice simulations: a new quantum many-body approach
 - \rightarrow based on the successful continuum nuclear chiral EFT
 - \rightarrow a number of intriguing results already obtained
 - ightarrow clustering emerges naturally, lpha-cluster nuclei
 - \rightarrow fine-tuning in nuclear reactions can be studied
 - \rightarrow N3LO precision upcoming \rightarrow next slide
 - \rightarrow essential elements of nuclear binding \rightarrow next-to-next slide
- Various bridges to lattice QCD studies need to be explored
- Many open issues can now be addressed in a truly quantitative manner \rightarrow the "holy grail" of nuclear astrophysics ⁴He+¹²C \rightarrow ¹⁶O + γ Fowler (1983)

N3LO CALCULATIONS

- np scattering @ N3LO including unertainties
 - Li, Elhatisari, Epelbaum, Lee, Lu, UGM Phys. Rev. **C 98** (2018) 044002

 \triangleleft < \land \lor

ESSENTIAL ELEMENTS for NUCLEAR BINDING

Lu, Li, Elhatisari, Epelbaum, Lee, UGM [arXiv:1812.10928]

0

• Highly SU(4) symmetric LO action without pions, only four parameters

$$\begin{split} H_{\rm SU(4)} &= H_{\rm free} + \frac{1}{2!} C_2 \sum_n \tilde{\rho}(n)^2 + \frac{1}{3!} C_3 \sum_n \tilde{\rho}(n)^3 \\ \tilde{\rho}(n) &= \sum_i \tilde{a}_i^{\dagger}(n) \tilde{a}_i(n) + \frac{s_L}{|n'-n| = 1} \sum_i \sum_{i=1}^n \tilde{a}_i^{\dagger}(n') \tilde{a}_i(n') \\ \tilde{a}_i(n) &= a_i(n) + \frac{s_{NL}}{|n'-n| = 1} a_i(n') \\ &= 1 \end{split}$$

 s_L controls the locality of the interactions, s_{NL} the non-locality of the smearing

 \rightarrow describes binding energies, radii, charge densities and the EoS of neutron matter

Nuclear Physics as Precision Science – Ulf-G. Meißner – GSI, Jan. 15, 2019