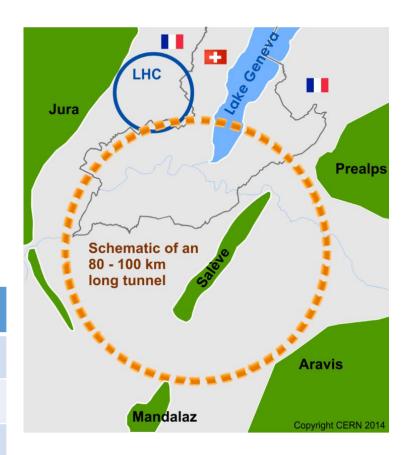
FCC RF beam dynamics and HOM power challenges


Ivan Karpov, CERN

Acknowledgments: P. Baudrenghien, O. Brunner, A. Butterworth, R. Calaga, E. Shaposhnikova, D. Teytelman

Future circular electron-positron collider FCC-ee

- Tunnel circumference, C = 97.75 km
- Experimental program has 4 energy stages
- Maximum acceptable power loss per beam due to synchrotron radiation is 50 MW

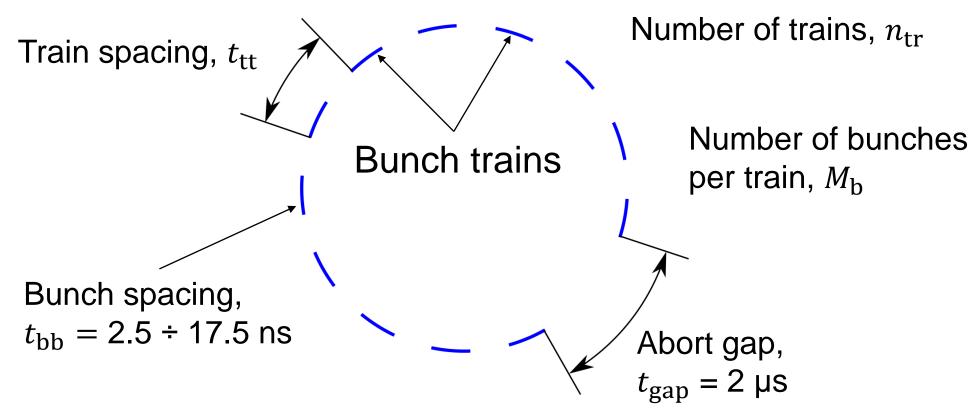
		Z	W	H	t
Energy/beam E	[GeV]	45.6	80	120	182.5
Energy loss/turn U_0	[GeV]	0.036	0.34	1.72	9.21
RF voltage/beam V _{RF}	[GV]	0.1	0.75	2.0	10.93
Beam current I _{b,DC}	[mA]	1390	147	29	5.4

Beam-cavity interaction challenges in FCC-ee Z

The Z machine has the highest beam current and the lowest total RF voltage

 Power losses due to high order modes (HOM) must be extracted by HOM couplers (maximum 1 kW/coupler in SC RF)

• Transient beam loading leads to bunch length spread or/and to shift of collision point, therefore to possible reduction of luminosity

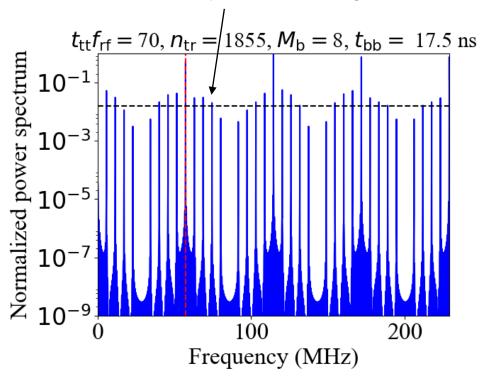

HOM power loss

Simulated cavity Normalized Fourier harmonics impedance of beam current $P = I_{\rm b,DC}^2 \sum_{k=-\infty}^{\infty} {\rm Re} \big[Z_{||}(kf_{\rm rev}) \big] |I_k|^2$

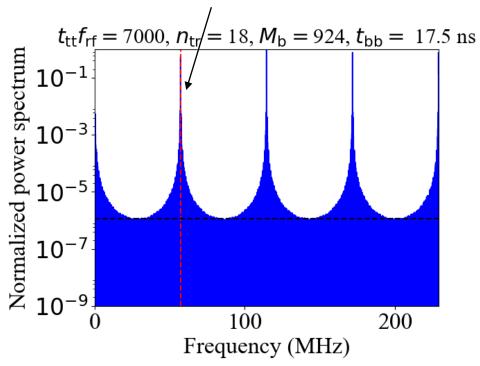
 $I_{\rm b,DC}$ – average beam current $f_{\rm rev}$ – revolution frequency k – revolution harmonic number

→ Power losses depend on HOM impedance and beam spectrum (ring filling schemes)

Possible beam filling schemes

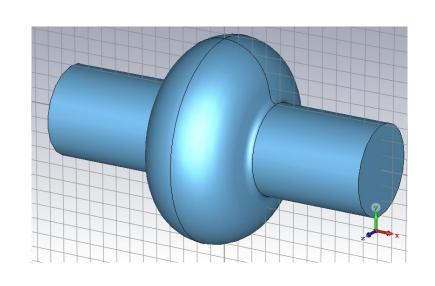

Beam spectrum is dominated by:

 $1/t_{\rm bb}$ lines (always present)


 $1/t_{\rm tt}$ lines (depending on number of trains)

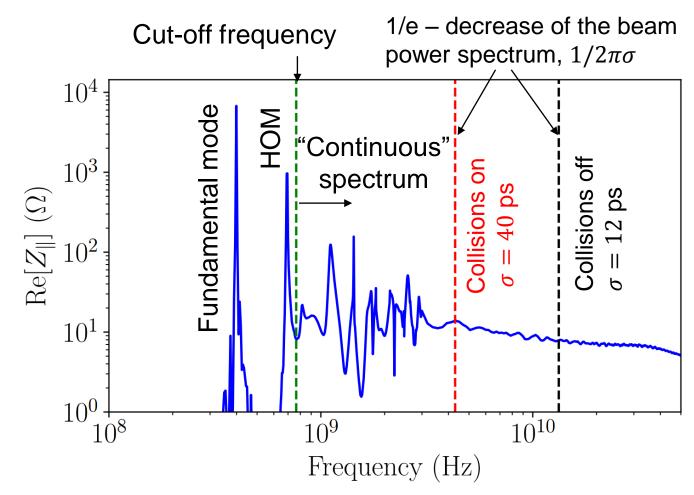
Possible beam filling schemes

Defined by train spacing



Beam spectrum is dominated by:

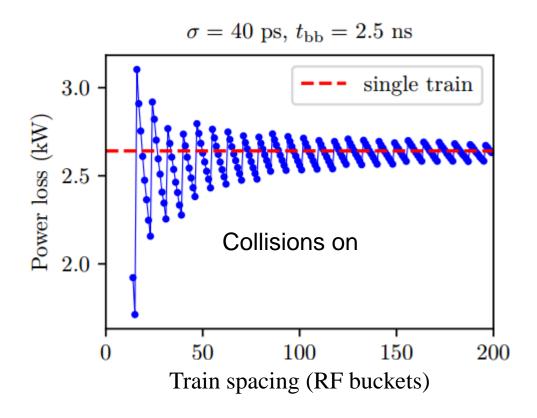
 $1/t_{\rm bb}$ lines (always present)

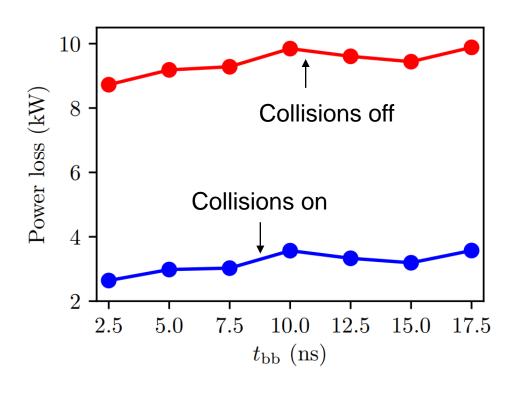

 $1/t_{\rm tt}$ lines (depending on number of trains)

LHC-like superconducting single-cell cavity

ABCI* and CST** results:

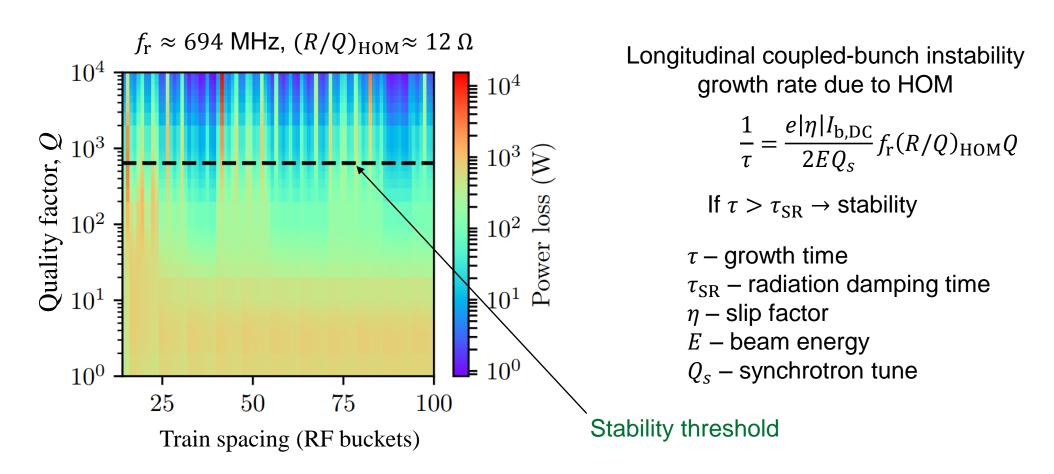
- Fundamental mode at 400.79 MHz with $(R/Q) = 42.3 \Omega$
- HOM below cut-off frequency at 694 MHz, $(R/Q)_{HOM} \approx 12 \Omega$


→ Contributions of impedance below and above cut-off frequency are important for power loss calculations


^{*}Azimuthal Beam Cavity Interaction code, http://abci.kek.jp/abci.htm

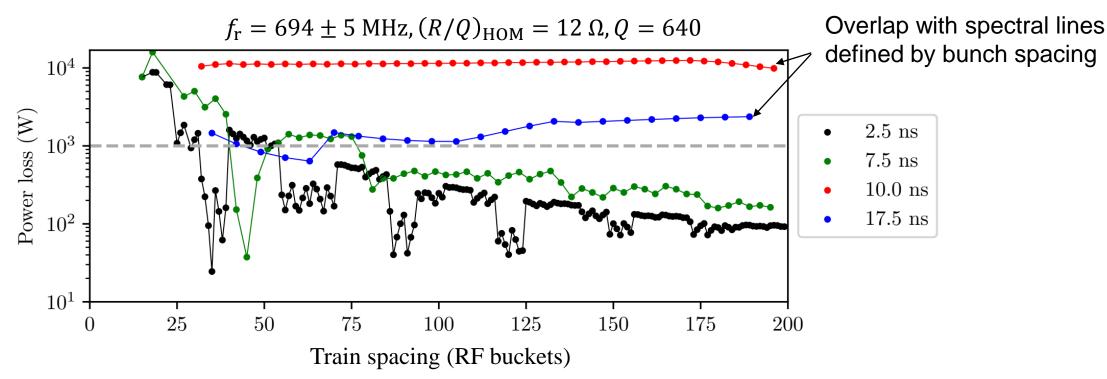
^{**}CST EM STUDIO, https://www.cst.com/products/cstems

Power loss above cut-off frequency


Assumptions: total current \leq 1.4 A, number of bunches \leq 16640, abort gap \geq 2 µs, bunch population 1.7e11 **Variable parameters:** number of bunches in the train, number of trains, train spacing

- \rightarrow Power loss is moderate for the present cavity design for bunches in collisions ($\approx 3 \text{ kW}$)
- → There is a weak dependence on train spacing and bunch spacing

Power loss for HOM below cut-off frequency

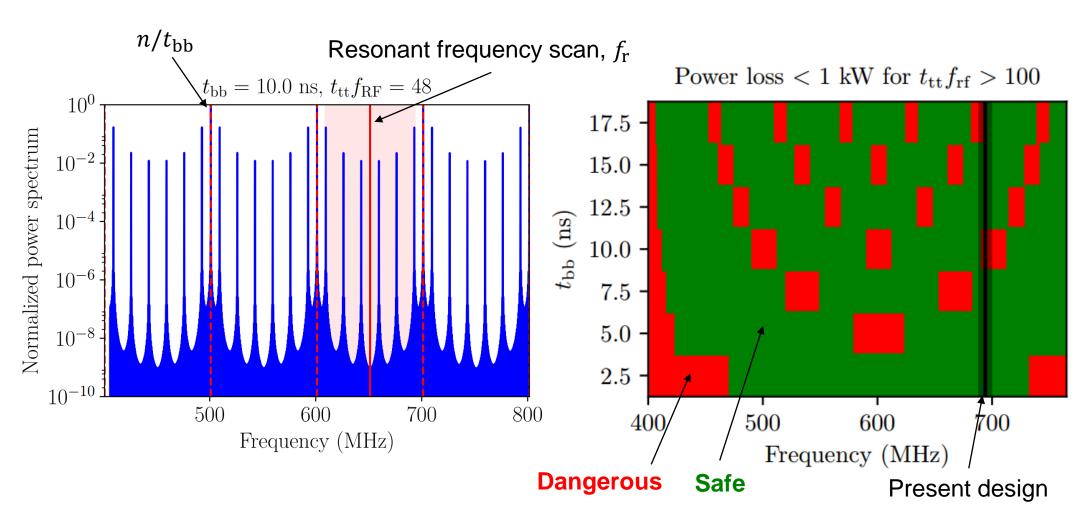


Power losses of about 1 kW are for small Q + "resonant" cases with high Q

- → Damping of the mode for longitudinal stability should be moderate
- → Resonant cases should be identified

Power losses for different filling schemes

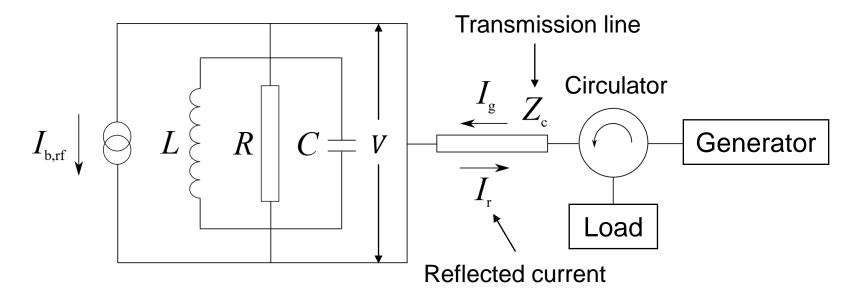
Resonant case when the beam spectral line overlaps with HOM* $\left|1 - \frac{[f_{\rm r}t_{\rm tt}]}{f_{\rm r}t_{\rm tt}}\right| < \frac{1}{Q}$



→ Some filling schemes should be avoided in machine operation (restrictions for train and bunch spacings)

Rounded off value

^{*}I.Karpov, R. Calaga, E. Shaposhnikova, Phys. Rev. Accel. Beams 21, 071001 (2018)


More "general" case

→ Operation settings define recommendations for the cavity geometry

Transient beam loading

Model of superconducting RF cavity linked to generator via circulator*

Generator current**
$$I_{\rm g} = \frac{V(t)}{2(R/Q)} \left(\frac{1}{Q_0} + \frac{1}{Q_{\rm ext}} - \frac{2i\Delta\omega}{\omega_{\rm RF}} \right) + \frac{dV(t)}{dt} \frac{1}{\omega_{\rm RF}(R/Q)} + \frac{I_{\rm b,RF}(t)}{2}$$

Cavity detuning is $\Delta \omega = \omega_0 - \omega_{\rm rf}$, $R = (R/Q)Q_0$, $Z_c = (R/Q)Q_{\rm ext}$

*D. Boussard, CERN-SPS-ARF-DB-GW-NOTE-84-9, 1984

**J. Tückmantel, CERN-ATS-Note-2011-002, 2011

Beam induced transients

amplitude and phase modulations amplitude and phase modulations Cavity voltage $V(t) = \dot{A}(t)e^{i\phi(t)}$ Beam current $I_{b,rf}(t) = A_b(t)e^{-i\phi_s + i\phi_b(t)}$

> Average synchronous phase $eN_{cav}V_{cav}\cos\phi_s=U_0$

Generator current
$$I_{\rm g} = \frac{V(t)}{2(R/Q)} \left(\frac{1}{Q_0} + \frac{1}{Q_{\rm ext}} - \frac{2i\Delta\omega}{\omega_{\rm RF}} \right) + \frac{dV(t)}{dt} \frac{1}{\omega_{\rm RF}(R/Q)} + \frac{I_{\rm b,RF}(t)}{2}$$

Synchronous phase
$$eN_{cav}A(t)\cos[\phi_s - \phi_b(t) + \phi(t)] = U_0$$

- \rightarrow System of equations for A(t), $\phi(t)$, and $\phi_h(t)$ can be obtained
- \rightarrow Solution depends on the choice of $\Delta\omega$ and $Q_{\rm ext}$

Optimal parameters

Generator power*
$$P_{g} = \frac{1}{2}Z_{c}|I_{g}|^{2} = \frac{1}{2}(R/Q)Q_{ext}|I_{g}|^{2}$$

It can be minimized for given:

- average beam current $\langle I_{\rm b,rf} \rangle = F_{\rm b} I_{\rm b,dc} e^{-i\phi_s}$, with $F_{\rm b} = 2 \exp[-(\omega_{\rm rf}\sigma)^2/2]$ bunch form factor
- average cavity voltage $\langle V \rangle = V_{\text{cav}}$

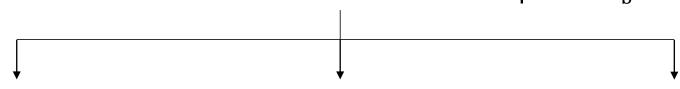
Optimal loaded quality factor

$$Q_0 \gg Q_{\mathrm{ext}}$$
 for superconducting cavities
$$\frac{1}{Q_{\mathrm{L,opt}}} = \frac{1}{Q_{\mathrm{ext,opt}}} + \frac{1}{Q_0} \approx \frac{1}{Q_{\mathrm{ext,opt}}} \approx \frac{V_{\mathrm{cav}}}{F_{\mathrm{b}}I_{\mathrm{b,dc}}(R/Q)\mathrm{cos}\phi_s}$$

$$\Delta\omega_{\rm opt} = -\omega_{\rm rf} \frac{F_{\rm b}I_{\rm b,dc}(R/Q)\sin\phi_{\rm s}}{2V_{\rm cav}}$$

Optimal detuning

→ Beam is unstable for optimal parameters because the second Robinson limit** is reached if there are no loops around cavity


^{*}J. Tückmantel, CERN-ATS-Note-2011-002, 2011

^{**}K. W. Robinson, Stability of beam in radiofrequency system, Rep. CEAL-1010 (1964)

Small-signal Pedersen model

Small modulations: $A(t) = V_{\text{cav}}[1 + a_V(t)], A_{\text{b}}(t) = F_{\text{b}}I_{\text{b,dc}}[1 + a_{\text{b}}(t)]$

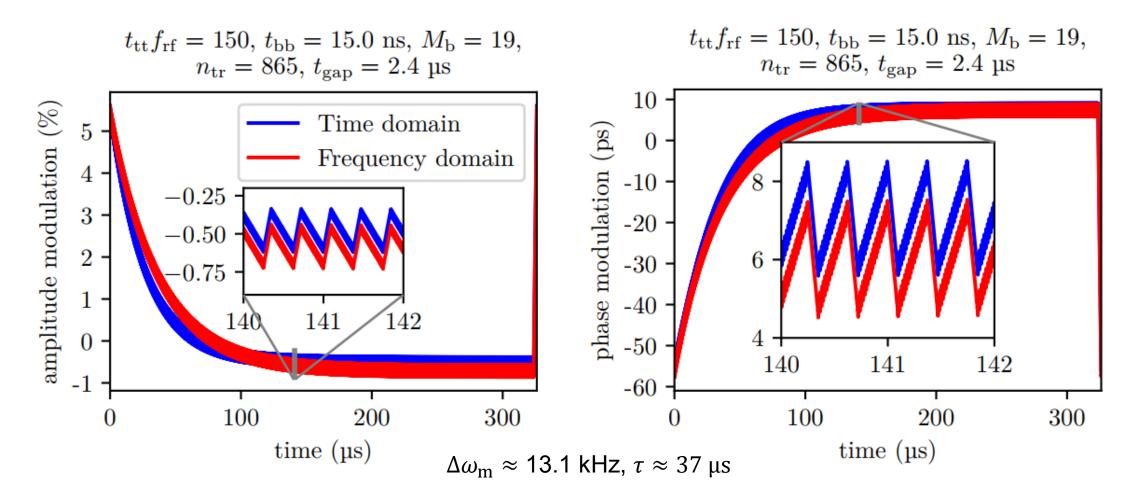
Transfer functions* from beam current amplitude $\tilde{a}_{\rm b}$

cavity voltage amplitude \tilde{a}_V cavity voltage phase $\tilde{\phi}$

beam phase $\tilde{\phi}_{\rm b}$

$$\Delta\omega_{\rm m} = \frac{\Delta\omega_{\rm opt}}{\sin^2\phi_s}$$

$$\frac{\tilde{a}_{V}(s)}{\tilde{a}_{b}(s)} = -\frac{\Delta \omega_{\text{opt}} \tau \cot \phi_{s}}{1 + \tau s} \qquad \frac{\tilde{\phi}(s)}{\tilde{a}_{b}(s)} = -\frac{\Delta \omega_{\text{opt}} \tau}{1 + \tau s} \qquad \frac{\tilde{\phi}_{b}(s)}{\tilde{a}_{b}(s)} = -\frac{\Delta \omega_{\text{m}} \tau}{1 + \tau s}$$


$$\frac{\tilde{\phi}(s)}{\tilde{a}_{\rm h}(s)} = -\frac{\Delta \omega_{\rm opt} \tau}{1 + \tau s}$$

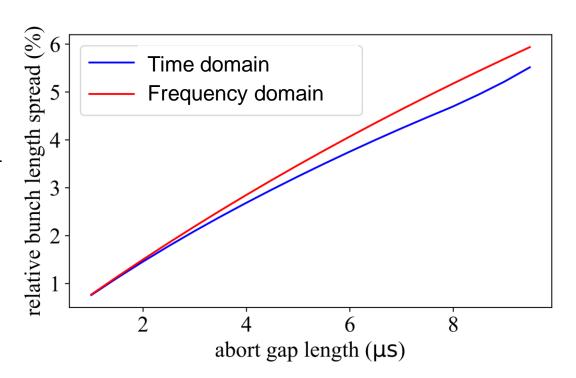
$$\frac{\tilde{\phi}_{\rm b}(s)}{\tilde{a}_{\rm b}(s)} = -\frac{\Delta \omega_{\rm m} \tau}{1 + \tau s}$$

 $\tau = 2Q_{\rm L}/\omega_{\rm rf}$ - cavity filling time, s – complex variable

- → Magic detuning can be used for transient beam loading calculations
- *F. Pedersen, Beam loading effects in the CERN PS Booster, IEEE Trans. Nucl. Sci. 22, 1906 (1975) **F. Pedersen, RF cavity feedback, CERN-PS-92-59-RF, 17 (1992)

Transient beam loading in FCC-ee Z

- → There is a strong modulation due to the abort gap and a fine structure due to the gaps between trains
- → Reasonable agreement between time-domain and frequency-domain calculations


Results for FCC-ee Z

- Phase modulations can result in collision point shift, but It can be compensated by proper matching
 of abort gap transients (for example in the LHC*)
- Bunch length modulations can still affect luminosity

Bunch length
$$\sigma(t) = \frac{\eta \Delta EC}{2\pi Q_s(t)}$$

Synchrotron tune
$$Q_s(t) = \sqrt{\frac{h\eta A(t)N_{\rm cav}}{2\pi E}}\sin[\phi_s - \phi_b(t) + \phi(t)]$$

h – harmonic number ΔE – energy spread

- → For baseline parameters, the abort gap length < 2 µs and bunch length spread can be neglected
- *T. Mastoridis, P. Baudrenghien, and J. Molendijk, Phys. Rev. Accel. Beams 20, 101003 (2017)

Conclusions

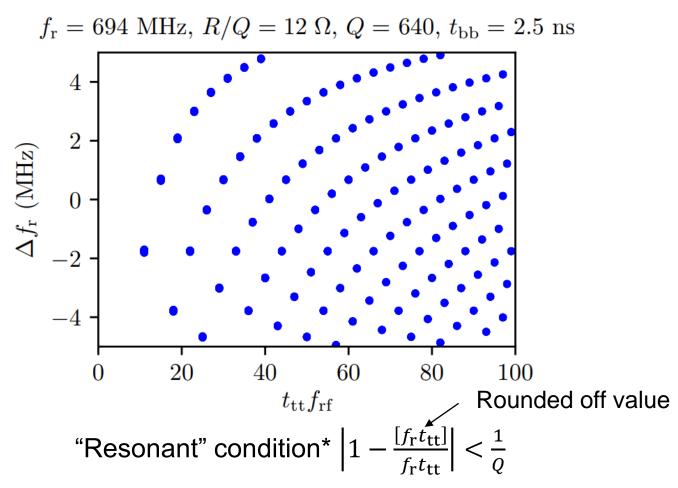
- HOM power loss contributions:
 - From impedance above cutoff frequency is about 3 kW,
 - From overlap of HOM below cutoff frequency with beam spectral line is below 1 kW for train spacing larger than 100 RF buckets, if 10 ns and 17.5 ns bunch spacing are excluded from operation.
- HOM frequency ranges for new cavity designs which are "safe" for given bunch spacings were identified.
- Beam induced transient are dominated by abort gap:
 - collision point shift still can be eliminated by matching abort gap transients,
 - for $t_{\rm gap}$ < 2 µs bunch length spread < 2%.

Thank you for your attention!

Second Robinson limit

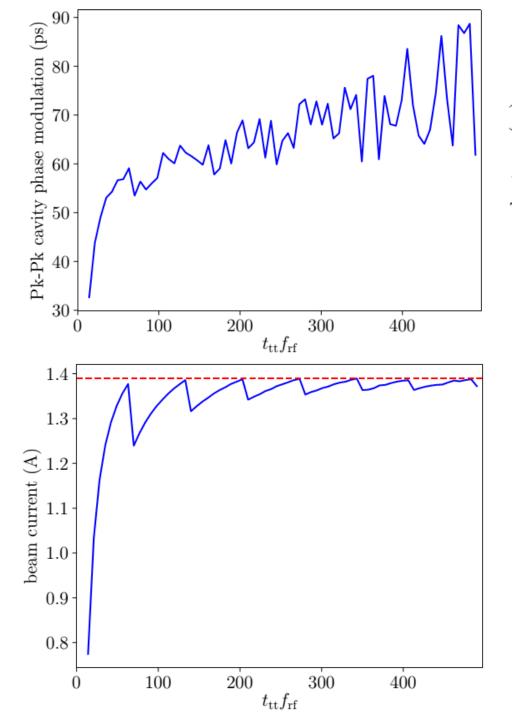
Second Robinson limit above transition (no loops around cavity)*

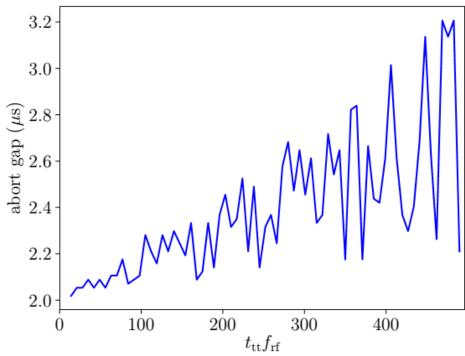
$$Y < -\frac{2\sin\phi_s}{\sin(2\phi_z)}$$


$$Y = F_{\rm b}I_{\rm b,dc}(R/Q)Q_{\rm L}/V_{\rm cav}$$

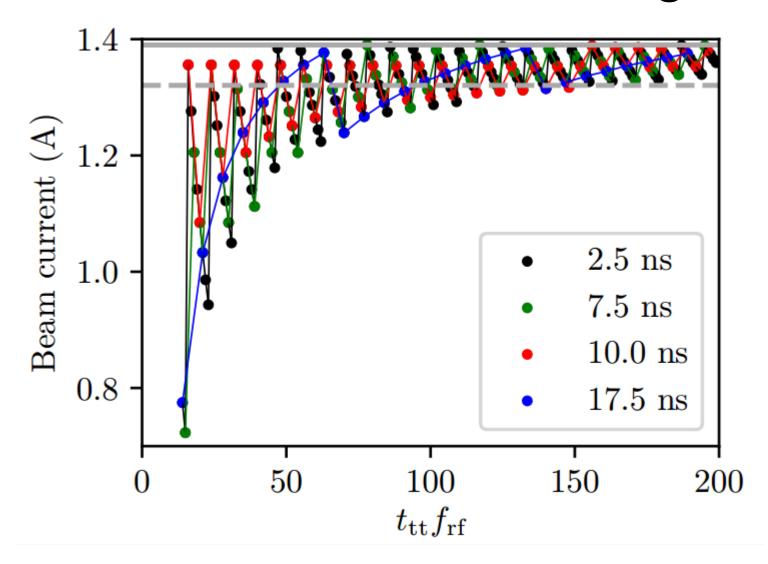
$$\phi_z = \arctan[2Q_{\rm L}\Delta\omega/\omega_{\rm rf}]$$

for optimal parameters $(Y = 1/\cos\phi_s \text{ and } \phi_z = -\phi_s)$


*K. W. Robinson, Stability of beam in radiofrequency system, Rep. CEAL-1010 (1964)


Shift of the resonant frequency

- → There are many cases when the spectrum line hits the resonant line
- → Not all of them are dangerous

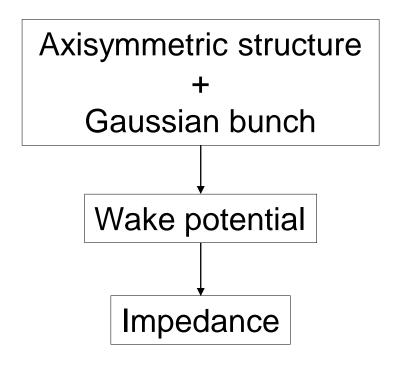

^{*}I.Karpov et al., CERN-ACC-NOTE-2018-0005 (2018)

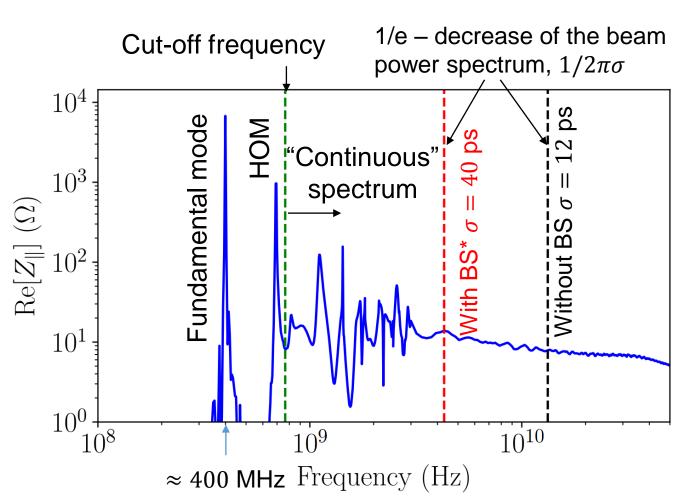
Dependence on the train spacing for bunch spacing of 17.5 ns

Beam current for different filling schemes

Beam-cavity interaction challenges in FCC-ee Z

Parameter	Value	
Beam current, I _{b,DC}	1.39 A	
Number of bunches, M	16640	
Minimum abort gap, $\tau_{\rm gap}$	2 µs	
RF frequency, $f_{\rm RF}$	400.79 MHz	
R/Q of fundamental mode	42.3 Ω	
Cavity voltage, V _{cav}	1.91 MV	
Number of cavities, N _{cav}	52	
Harmonic number, h	130680	
Radiation damping time, $\tau_{\rm SR}$	414 ms	


→ Power losses due to high order modes (HOM)

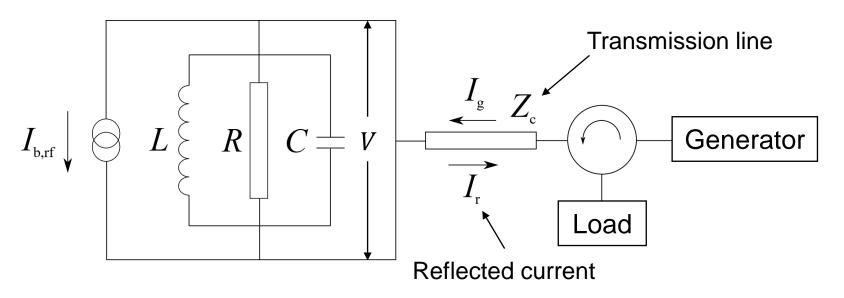

→ Transient beam loading

→ Longitudinal coupled-bunch instability

Impedance of LHC-like single-cell cavity

Impedance calculation using ABCI

*Beamstrahlung effect


 \rightarrow Only one mode below cut-off frequency with parameters: $f_r \approx 694$ MHz, $R/Q \approx 12 \Omega$ (CST EMS simulations), quality factor Q = ?

Transient beam loading

Model of superconducting RF cavity linked to generator via circulator*

From circuit equations:

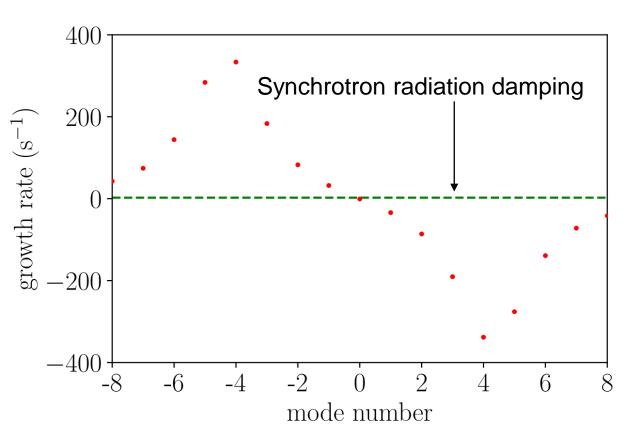
$$V = Z_c(I_g + I_r)$$
$$I_{LRC} = I_g - I_r - I_{b,RF}$$

Assumptions:

- all dynamic variables are proportional to $\exp(i\omega_{RF}t)$ with varying amplitude
- Slow change of the complex voltage amplitude, $|dV^2(t)/dt^2| \ll |\omega_{\rm RF}^2 V(t)|$

Generator current**
$$I_{\rm g} = \frac{V(t)}{2(R/Q)} \left(\frac{1}{Q_0} + \frac{1}{Q_{\rm ext}} - \frac{2i\Delta\omega}{\omega_{\rm RF}} \right) + \frac{dV(t)}{dt} \frac{1}{\omega_{\rm RF}(R/Q)} + \frac{I_{\rm b,RF}(t)}{2}$$

Cavity detuning is $\Delta \omega = \omega_0 - \omega_{\rm rf}$, $R = (R/Q)Q_0$, $Z_c = (R/Q)Q_{\rm ext}$

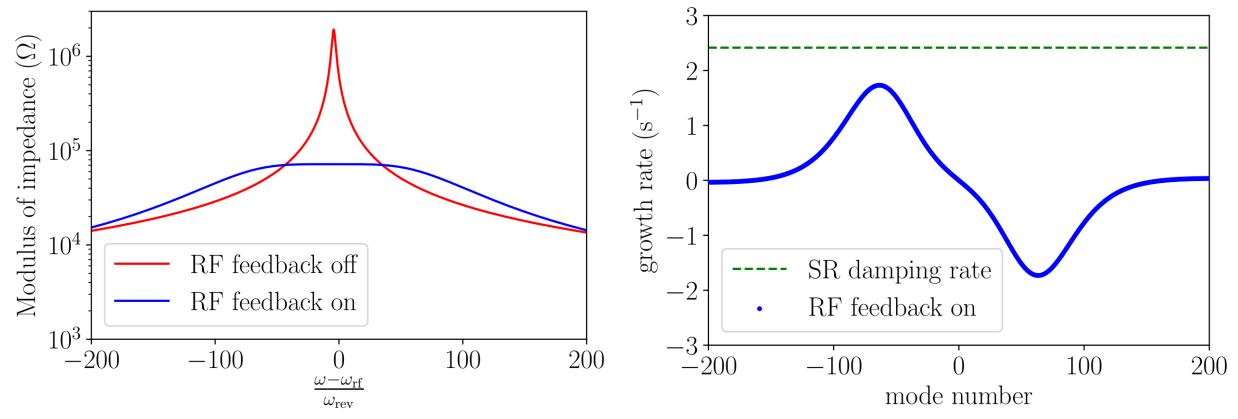

**J. Tückmantel, CERN-ATS-Note-2011-002, 2011

^{*}D. Boussard, CERN-SPS-ARF-DB-GW-NOTE-84-9, 1984

Fundamental impedance driven instability

The growth rate of the longitudinal coupled-bunch mode m*

$$\frac{1}{\tau_{\rm m}} \approx \frac{e\eta\omega_{\rm RF}}{4\pi E Q_s} I_{\rm b,DC} N_{\rm cav} ({\rm Re}\{Z_{\parallel}[\omega_{\rm RF} + (m+Q_s)\omega_{\rm rev}]\} - {\rm Re}\{Z_{\parallel}[\omega_{\rm RF} - (m+Q_s)\omega_{\rm rev}]\})$$


Fundamental cavity impedance

$$Z_{\parallel}(\omega) = \frac{(R/Q)Q_{\rm L}}{1 + iQ_{L} \left[\frac{\omega_{0}}{\omega_{\rm RF}} - \frac{\omega_{\rm RF}}{\omega_{0}} \right]}$$

 \rightarrow For magic detuning (about $4 \times f_{rev}$) the most unstable mode is m = -4

*For example in A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, 1993

Mitigation by direct RF feedback*

The flat response is achieved for $1/G = R/Q\omega_{RF}\tau_{d}$, loop delay $\tau_{d} \approx 700$ ns (similar to LHC)

- → Growth rates of all unstable modes are smaller than synchrotron radiation damping rate
- → To increase stability margins one-turn delay feedback (similar to SPS, LHC) or more sophisticated double peaked comb filter (PEP II) can be used

^{*}D. Boussard, Control of cavities with high beam loading, IEEE NS-32 (1985)