

MVD SPD

Status report of the readout architecture design for the silicon pixel detectors

Gianni Mazza

PANDA Meeting, Dec 7th -11th 2009

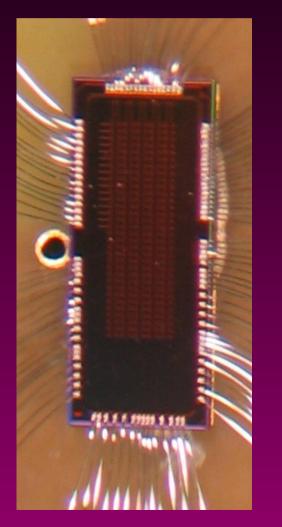
- * "Hiccups" in the technology and CAD updates
- * ToPiX version 3 architecture
- * Data transmission
- * Power supplies news from TWEPP 2009
- Clock frequency issues

"Hiccups"

- * Technology : from LM to DM flavour
 - \rightarrow LM metal layers : 6 thin + 2 thick
 - \rightarrow DM metal layers : 3 thin + 2 thick + 3 RF
 - \rightarrow more analog-oriented : problems in digital routing
- * CAD tools : Cadence has changed its database format : from CDB (IC v. 5.1) to OA (IC v. 6.1)
 - \rightarrow the translation tool has several problems...
- * Standard cells and pad libraries + design flow :
 - → Old tools from ARM and Manhattan Routing
 - → New tools from IBM and Cadence

Gianni Mazza

ToPiX specs



- * Pixel size : 100 μm × 100 μm
- * Chip active area : 11.4 mm × 11.6 mm (116 rows, 110 cols)
- * dE/dx : Time over Threshold, up to 100 fC
- * Analog noise floor : $< 32 \text{ aC} (200 \text{ e}^-)$
- * System clock frequency : 155÷160 MHz
- * Max event and data rates : 12.3 MHz/cm² 815 Mb/s/chip (?)
- * Power consumption : $< 500 \text{ mW/cm}^{2}$
- * Total Ionizing Dose : < 100 kGy
- * Equivalent neutron fluence : $< 5 \cdot 10^{14}$ 1 MeV n_{EQ}/cm^2 Gianni Mazza PANDA Meet

ToPiX v2

Gianni Mazza

- Full pixel cell (analogue + digital)
- Two folded columns with 128 cells
- Two columns with 32 cells
- $5x2 \text{ mm}^2$ die area
- CMOS 0.13 μm LM technology
- Working frequency : 50 MHz
- Dice-based SEU resistant FFs
- Tests :
 - \rightarrow test bench
 - \rightarrow with a sensor and a radiation source
 - \rightarrow TID and SEU PA

ToPiX v3

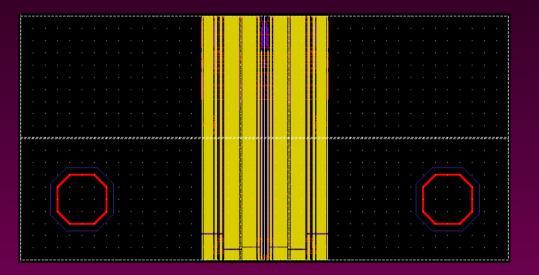
New prototype in 0.13 μm under development – main changes :

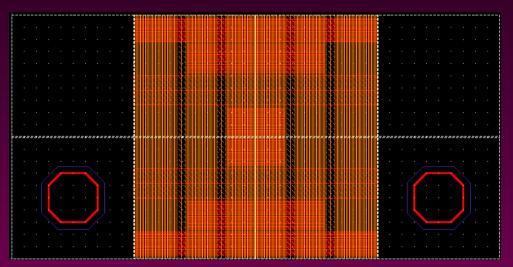
- * BEOL option : DM
- Standard cells library : IBM
- * Clock frequency : 155÷160 MHz
- * SEU protection : triple redundancy
- More compact analog part

LM vs DM

	LM	DM
Analogue features	3	۲
Routing density	٢	3
Power distribution	3	٢

Gianni Mazza



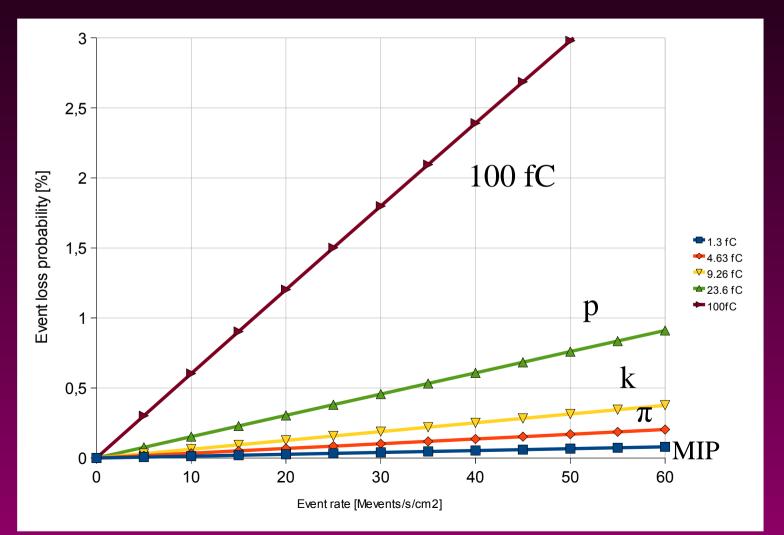

LM vs DM routing

LM pixel buses

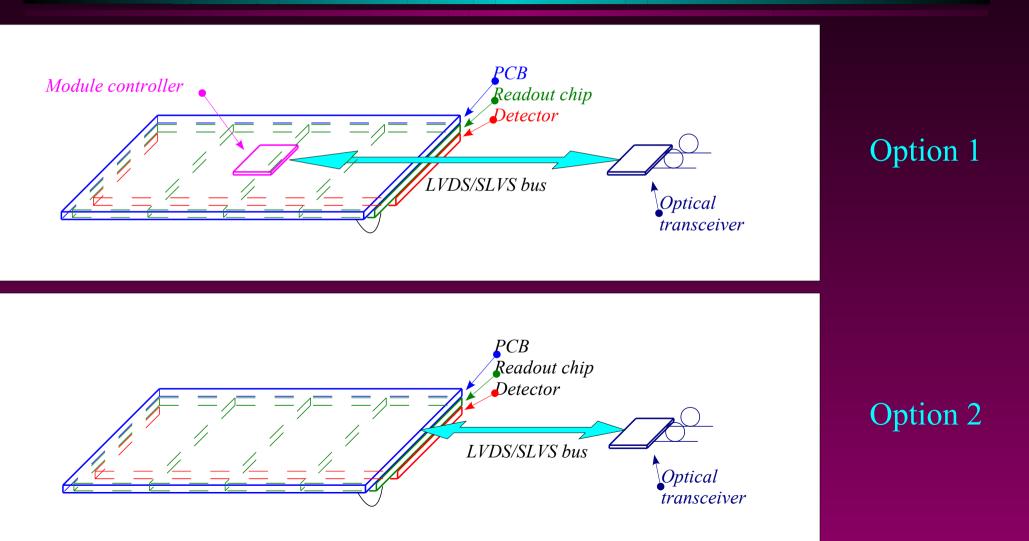
Bus routed on M4 and M6 Minimum bus pitch 0.4 μ m Wire resistance : 64 Ω/\Box 1 readout bus per pixel column

Gianni Mazza

Bus routed on MG only Minimum bus pitch 0.8 μ m Wire resistance : 37 Ω/\Box 1 readout bus every 2 pixel column



- * Time resolution : 1.8 ns r.m.s. @ 160 MHz
- * Pixel readout time : 8 clock cycles (50 ns)
- * ToT gain : 62.5 ns/fC
- * Pixel dead time @ 1.3 fC : ~90 ns
- * Pixel dead time (a) 100 fC : $\sim 6 \mu s$
- * Chip active area : 1.32 cm^2
- * Bits per event : 50



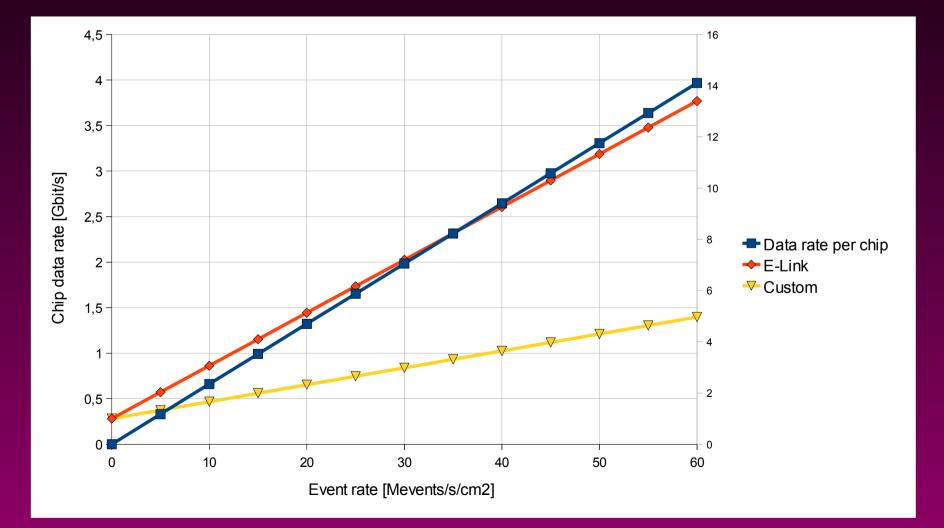
PANDA Meeting, Dec 7th -11th 2009

Data transmission

PANDA Meeting, Dec 7th -11th 2009

Electrical link

E-link


- * Under development for the GBT interface
- * Up to 320 Mbit/s
- Direct connection to the GBT
- * More cables, less design work
- Custom design
- * Target : 1 Gbit/s
- * Common development : PANDA MVD and NA62 GTK
- More design work, less cables

Gianni Mazza

Data rate vs event rate

PANDA Meeting, Dec 7th -11th 2009

Power supply

- * Deep submicron technologies requires lower voltages (0.35 $\mu m \rightarrow 3.3 \text{ V}, 0.25 \ \mu m \rightarrow 2.5 \text{ V}, 0.13 \ \mu m \rightarrow 1.2 \text{ V}$)
- * Power saving (~same current, lower voltage) *but...*
 - power drop on lines and voltage regulator become critical !
- * $500 \text{ mW}/1.2 \text{ V} = 420 \text{ mA} \times 3 \Omega = 1.26 \text{ V} \rightarrow 51\%$ efficiency loss for cabling only
- * Two solutions are under study in the sLHC community :
 - serial powering
 - DC-DC converters

Gianni Mazza

Serial powering

- * ATLAS (not official) choice
- * N modules are connected in series with a $N \times V_{DD}$ voltage
- Shunt regulator to ensure voltage drop (keep current constant)
- * AC connection to the detector and to the DAQ
- * Three configurations :
 - W : on chip shunt regulator and shunt transistor
 - M : on chip shunt transistor, external shunt regulator
- SPi ext : external shunt regulator and shunt transistor
 Gianni Mazza PANDA Meeting, Dec 7th -11th 2009

DC-DC converter

- * CMS official 1st choice
- Direct voltage conversion via PWM
- Commonly used in consumer electronics
- * High efficiency
- * Issues for HEP experiments :
 - * noise
 - inductors in magnetic field

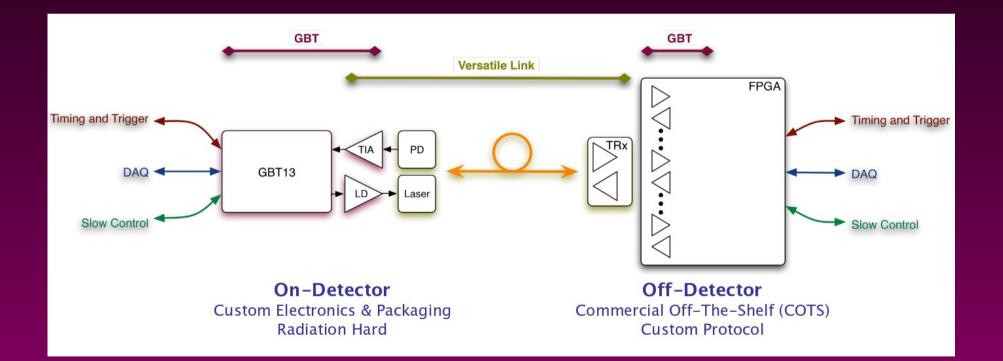
- * Just started looking at the issue
- * No manpower for a custom solution
- * Very first feeling : DC-DC looks better
- * PANDA and sLHC timeschedule are similar

 \rightarrow we can wait and see who will be the winner...

Basic considerations :

- in a triggerless environment SPDs generate a lot of data (currently 50 bits/hit : address+time reference+ToT)
 - to fit space and material requirements, we need electrical to optical conversion as close as possible to the detector
- electronics has to be radiation hard
 - no COTS components can be used
 - looking for solution in the HEP community, expecially at development for LHC-sLHC

Clock issue



- * ToPiX is (almost) completely synchronous
 - most performances are defined by the clock (time resolution, dead time, transmission bandwidth, ToT gain)
 - * we do need to freeze the clock frequency (at least $\pm 10\%$)
- * LHC electronics is based on a 40 MHz clock
 - in principle many ASICs can work at different frequencies but it is not guarantee (ref. QPLL)
 - * for pixel it would be safer to for a $2^{N} \times 40$ MHz clock
 - * any other PANDA detectors plan to use LHC electronics ?

GBT project

PANDA Meeting, Dec 7th -11th 2009

GBT chipset

Radiation tolerant chipset :

- * GBTIA : Transimpedance optical receiver
- * GBLD : Laser driver
- * GBTx : Data and Timing Transceiver
- * GBT-SCA : Slow control ASIC

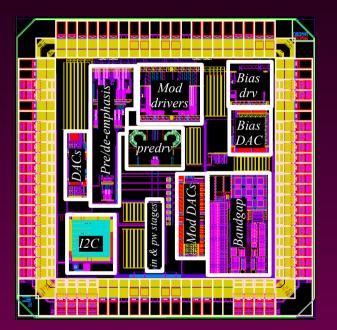
Supports :

- * Bidirectional data transmission
- * Bandwidth :
 - \rightarrow Line rate : 4.8 Gb/s
 - \rightarrow Effective : 3.36 Gb/s

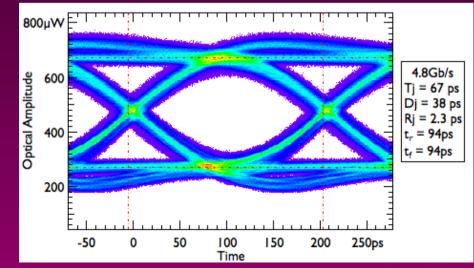
Gianni Mazza

Target Applications :

- * Data readout
- * TTC
- Slow control and monitoring links


Radiation Tolerance :

- Total dose
- Single Event Upset


GBLD

* GBLD : 5 Gb/s laser driver

- * Modulation current : 2÷24 mA
- * Bias current : 2÷43 mA
- * Pre-emphasis/de-emphasis current : 0÷12 mA
- I2C digital control

PANDA Meeting, Dec 7th -11th 2009

Torino contribution to the GBT project

Conclusions

- * Some "hiccups" in the technology for ToPiX
- Design of the ToPiX v3 started
 - *still under the sword of Damocles of the clock frequency...*
- * Ongoing studies on the full architecture :
 - electrical data transmission
 - optical conversion and DAQ interface
 - * power supply
- clock issue