Standalone track finding in GEMs

Radoslaw Karabowicz GSI

Motivation

- Obvious: no track finding task in GEM
- Subtle: there is the LHE track finding
- Problem: I did not like the results I got using LHE
- Quality: QA is missing for LHE
- Combinatorial: fake hits are created in the GEM detector by combining strips fired by different MC tracks

Example plots from LHE track finding

3 muons
shot in forward direction EVENT 1
"good" event

Example plots from LHE track finding

3 muons shot in forward direction

EVENT 0
"bad"
event

Track finding chain

- Hit matching in individual stations
- Hit matching between stations - creation of track segments
- Merging track segments into tracks
- Removal of spurious and obviously wrong tracks
- Creating array of PndTrackCand's

Hits in

 the GEM- Two sensitive layers per station $\sim 4 \mathrm{~cm}$ apart in z
- Two views per sensitive layer: - 1st: radial and concentric views (blue\&red strips)
- 2nd: tilted views
(pink\&black strips)

Hit matching in individual stations

- First step of the tracking is to find pairs of hits (in front and back layers of a station) that are close enough to be considered as "real" and left by one track
- Method:
- loop over hits on front layer
- find closest hit on back layer, but not farther than the error of the two hits' positions

Matching hits from different stations

- Imagine a track with infinite momentum emitted from the target at some angle
- Hit left by this particle's trajectory on station A will let you calculate the position of the track on some other station B (simply a linear extrapolation)
- Now consider all the tracks emitted from the target that pass through the point on station A. Where do they land on station B?

Matching hits from

different stations cont'd

Matching hits from

different stations cont'd

Combine hits from each pair of stations, calculate radius and phi angle, put them on a plot. Observe:
-middle of the curve $\left(0^{\circ}\right) \rightarrow$ infinite momenta
-the larger the phi the smaller the momenta
-negative/positive phi-> negative/ positive charge -different bands-> different station combinations

Matching hits from

different stations cont'd

The curve is fitted with a symmetric parabola:
$r_{B} z_{A} / r_{A} Z_{B}=0.9944432-0.000590706\left(\varphi_{B}-\varphi_{A}\right)^{2}$

Track segment: pair of hits on different stations, with actual radius laying close to the radius calculated using the above formula.

Track segment

The distance of the hit to the beam center together with the difference of the hits' phi angles on both stations let me calculate the actual track segment momenta. Empiric formulae:
$\varphi=\varphi_{A}+\left(\varphi_{A}-\varphi_{B}\right) \cdot z_{A} /\left(z_{B}-z_{A}\right)$

$Z_{1}=$	$Z_{B}-$	Z_{A}
$Z_{2}=$	$Z_{B} \cdot Z_{B}-$	$Z_{A} \cdot Z_{A}$
$Z_{3}=$	$Z_{B} \cdot Z_{B} \cdot Z_{B}-Z_{A} \cdot Z_{A} \cdot Z_{A}$	

$$
c_{1}=-2.3 \cdot 10^{-6} z_{3}+6.7 \cdot 10^{-4} z_{2}+1.0 \cdot 10^{-1} z_{1}
$$

$c_{2}=-7.5 \cdot 10^{-10} z_{3}-6.7 \cdot 10^{-7} z_{2}+7.4 \cdot 10^{-4} z_{1}$
$p=\left(c_{1}+c_{2} \cdot r_{A}\right) /\left(\varphi_{A}-\varphi_{B}\right)$

Track segment

track MC momentum vs hits' phi angle difference

Track segment

track MC theta vs hit radius

Sation 1 momentum -1.00 GovVac

Station 3 monentum -0.30 o ovive

Station 2 momentum -1.00 ovVC

Station 2 momentum -200 GeVVCl

Creating track segments

Goal:

Find all possible track segments in the GEM geometry

Realization:

Two nested loops over hits, pick up pairs of hits from different stations, check if the 'back' hit is close to the search ellipse of the 'front' hit, calculate momentum, theta and phi angle of the found track segment

Creating track segments

Example of an event with three MC tracks.
GEM consists of 4 stations, there are 23 segments found:
momentum phi angle theta angle found segment (stat. 0 \& 1), hits 0, 9, 15, 24 >>> $3.75575 \mathrm{GeV}, 113.256$ deg, 7.6694 deg. found segment (stat. 0 \& 1), hits 4, 11, 19, $26 \ggg 1.2846 \mathrm{GeV}, 37.6379 \mathrm{deg}, 12.857 \mathrm{deg}$. found segment (stat. 0 \& 1), hits 8, 14, 19, $26 \ggg 0.177452 \mathrm{GeV}, 142.133 \mathrm{deg}, 15.5102 \mathrm{deg}$. found segment (stat. 0 \& 1), hits 8,14, 23, $29 \ggg 1.80182 \mathrm{GeV}, 60.3243 \mathrm{deg}, 15.5102 \mathrm{deg}$. found segment (stat. 0 \& 2), hits $0,9,30,39 \ggg 4.37074 \mathrm{GeV}, 112.568$ deg, 7.6694 deg. found segment (stat. 0 \& 2), hits 4, 11, 34, $41 \ggg 1.28075 \mathrm{GeV}, 37.2942 \mathrm{deg}, 12.857 \mathrm{deg}$. found segment (stat. 0 \& 2), hits 8, 14, 34, $41 \ggg 0.304688 \mathrm{GeV}, 102.604 \mathrm{deg}, 15.5102 \mathrm{deg}$. found segment (stat. 0 \& 2), hits $8,14,38,44 \ggg 1.81594 \mathrm{GeV}, 59.9806 \mathrm{deg}, 15.5102 \mathrm{deg}$. found segment (stat. 0 \& 3), hits 0, 9, 45, 54 >>> $4.41979 \mathrm{GeV}, 112.339$ deg, 7.6694 deg. found segment (stat. 0 \& 3), hits 4, 11, 49, $56 \ggg 1.26929 \mathrm{GeV}, 36.7213 \mathrm{deg}, 12.857 \mathrm{deg}$. found segment (stat. 0 \& 3), hits $8,14,53,59 \ggg 1.83647 \mathrm{GeV}, 59.4077 \mathrm{deg}, 15.5102 \mathrm{deg}$. found segment (stat. 1 \& 2), hits 15, 24, 30, $39 \ggg 5.35903 \mathrm{GeV}, 111.423 \mathrm{deg}, 7.67755 \mathrm{deg}$. found segment (stat. 1 \& 2), hits 19, 26, 34, $41 \ggg 1.302 \mathrm{GeV}, 36.7213 \mathrm{deg}, 12.7958 \mathrm{deg}$. found segment (stat. 1 \& 2), hits 23, 29, 34, $41 \ggg 0.16546 \mathrm{GeV}, 173.069$ deg, 15.4985 deg. found segment (stat. 1 \& 2), hits 23, 29, 38, $44 \ggg 1.87522 \mathrm{GeV}, 59.4077 \mathrm{deg}, 15.4985 \mathrm{deg}$. found segment (stat. 1 \& 3), hits 15, 24, 45, 54 >>> $4.97978 \mathrm{GeV}, 111.423$ deg, 7.67755 deg. found segment (stat. 1 \& 3), hits 19, 26, 49, $56 \ggg 1.28602 \mathrm{GeV}, 35.8047$ deg, 12.7958 deg. found segment (stat. 1 \& 3), hits 23, 29, 49, $56 \ggg 0.277131 \mathrm{GeV}, 117.613 \mathrm{deg}, 15.4985 \mathrm{deg}$. found segment (stat. 1 \& 3), hits 23, 29, 53, 59 >>> $1.90212 \mathrm{GeV}, 58.4911 \mathrm{deg}, 15.4985 \mathrm{deg}$. found segment (stat. 2 \& 3), hits 30, 39, 45, 54 >>> $4.65867 \mathrm{GeV}, 111.423$ deg, 7.68244 deg. found segment (stat. 2 \& 3), hits 34, 41, 49, $56 \ggg 1.29271 \mathrm{GeV}, 34.4298 \mathrm{deg}, 12.7037 \mathrm{deg}$. found segment (stat. 2 \& 3), hits 38, 44, 49, $56 \ggg 0.142495 \mathrm{GeV}, 204.922$ deg, 15.4678 deg .
 found segment (stat. 2 \& 3) hits 38, 44, 53, $59 \ggg 1.98068$ GeV, $57.1162 \mathrm{deg}, 15.4678 \mathrm{deg}$.

Merging track segments

Match segments according to the hit number, momentum, theta and phi angles. Results: segments:

$01>$	0	9	15	24	3.75575	113.256	7.6694
$02>$	0	9	30	39	4.37074	112.568	7.6694
$03>$	0	9	45	54	4.41979	112.339	7.6694
$12>$	15	24	30	39	5.35903	111.423	7.67755
$13>$	15	24	45	54	4.97978	111.423	7.67755
$23>$	30	39	45	54	4.65867	111.423	7.68244

seems to belong to one track
segments:

0	$1>$	4	11	19	26	1.2846	37.6379	12.857
0	$2>$	4	11	34	41	1.28075	37.2942	12.857
0	$3>$	4	11	49	56	1.26929	36.7213	12.857
$12>$	19	26	34	41	1.302	36.7213	12.7958	
$13>$	19	26	49	56	1.28602	35.8047	12.7958	
$23>$	34	41	49	56	1.29271	34.4298	12.7037	

seems to belong to one track
segments:

$01>$	8	14	23	29	1.80182	60.3243	15.5102
$02>$	8	14	38	44	1.81594	59.9806	15.5102
$03>$	8	14	53	59	1.83647	59.4077	15.5102
$12>$	23	29	38	44	1.87522	59.4077	15.4985
$13>$	23	29	53	59	1.90212	58.4911	15.4985
$23>$	38	44	53	59	1.98068	57.1162	15.4678

seems to belong to one track
Panda CM XXXI, GSI, Dec 2009

Removing bad tracks

- Try to remove tracks, that do not satisfy following requirements:
- track segment parameters (momentum, angles) have to be consistent in different segments
- number of track segments have to be large enough
- hits belonging to tracks should be uniquely used, only by one track

Creating PndTrackCand's

- Create PndTrackCand'idates, with track parameters being the mean of the parameters of different track segments

Results

Definitions:

efficiency $(p)=\frac{\text { \#reco tracks matching these ones } \mathbb{\otimes}(p)}{\text { \#MC tracks that hit at least } 3 \text { stations(} p \text {) }}$
primaries: particles with vertex.Mag() < 1 cm
secondaries: partiles with vertex.Mag() $>1 \mathrm{~cm}$
reference: particles with:

```
plot vs p -> 5 5 < theta < 20
plot vs theta -> p>0.5 GeV/c
plot vs #hits -> 5 5 < theta < 25 & && p>0.5 GeV/c
```

Momentum resolution:
mom.res. $=($ McMom.Mag()-RecoMom.Mag()) / McMom.Mag() * 100\%

Gem Track Finder QA

 boxGen->SetPhiRange (0.,360.); boxGen->SetPRange (0.5,5.);

Tracking efficiencies:

$$
\text { all }=97.70 \%(9920 / 10154)
$$

$$
\text { prim }=99.77 \%(9780 / 9803)
$$

$$
\text { ref }=99.77 \%(9780 / 9803)
$$

$$
\sec =39.89 \%(140 / 351)
$$

21 ghosts, 0.00210 /event, $0.00194 / \mathrm{MC}$ tr.
0 clones, 0.00000 /event, $0.00000 / \mathrm{MC}$ tr.

Gem Track Finder QA

boxGen->SetPhiRange (0.,360.); boxGen->SetPRange (0.5,5.);

Tracking efficiencies:
all $=98.09 \% ~(9822 / 10013)$ prim $=99.32 \% ~(9697 / 9763)$ ref $=99.32 \% ~(9697 / 9763)$
$\sec =50.00 \% ~(125 / 250)$
3 ghosts, 0.00030 /event, $0.00028 / \mathrm{MC}$ tr. 0 clones, 0.00000 levent, $0.00000 / \mathrm{MC}$ tr.

Gem Track Finder QA boxGen->SetPRange (0.5,5.);

 boxGen->SetPhiRange (0.,360.);

Panda CM XXXI, GSI, Dec 2009

Tracking efficiencies:

all $=95.84 \% ~(9725 / 10147)$
prim $=97.91 \% ~(9592 / 9797)$
ref $=97.91 \% ~(9592 / 9797)$
$\sec =38.00 \%(133 / 350)$
391 ghosts, 0.39100 /event, 0.03619 /MC tr.
52 clones, $0.05200 /$ event, $0.00481 / \mathrm{MC}$ tr.

Gem Track Finder QA

 boxGen->SetPhiRange (0.,360.); boxGen->SetPRange (0.5,5.);

Panda CM XXXI, GSI, Dec 2009

 Tracking efficiencies:

$$
\begin{gathered}
\text { all }=93.88 \%(9425 / 10039) \\
\text { prim }=95.32 \%(9315 / 9772) \\
\text { ref }=95.32 \%(9315 / 9772) \\
\text { sec }=41.20 \%(110 / 267)
\end{gathered}
$$

411 ghosts, 0.41100 /event, 0.03867 /MC tr.
8 clones, 0.00800 /event, $0.00075 / \mathrm{MC} \mathrm{tr}$.

Results

4 GEM stations, 2 pions per event boxGen->SetThetaRange(2,30);

Gem Track Finder QA

boxGen->SetPhiRange (0.,360.); boxGen->SetPRange (0.2,10.);

Panda CM XXXI, GSI, Dec 2009

Tracking efficiencies:
all $=93.76 \% ~(74235 / 79178)$
prim $=96.67 \% ~(73228 / 75754)$
ref $=98.21 \%(63554 / 64711)$
$\sec =29.41 \%(1007 / 3424)$
182 ghosts, 0.00364 /event, 0.00187 /MC tr.
0 clones, 0.00000 /event, $0.00000 / \mathrm{MC} \mathrm{tr}$.

Results

3 GEM stations, 2 pions per event boxGen->SetThetaRange(2,30);

Gem Track Finder QA

 boxGen->SetPhiRange (0.,360.); boxGen->SetPRange (0.2,10.);

momentum resolution for primary tracks
hMomResPrimVsP

Tracking efficiencies:
all $=91.84 \% ~(57300 / 62389)$
prim $=94.35 \% ~(56494 / 59874$)
ref $=96.90 \%(47841 / 49369)$
$\sec =32.05 \%(806 / 2515)$
57 ghosts, 0.00114 /event, $0.00060 / \mathrm{MC}$ tr.
0 clones, 0.00000 /event, $0.00000 / \mathrm{MC} \mathrm{tr}$.
Panda CM XXXI, GSI, Dec 2009

Problems

- The code will not work with different magnetic field.
- But I've created a dedicated task to see if the track finding parameters match the magnetic field
- Any hit finding inefficiencies will probably have a bad effect on track finding efficiency - the code does not extra-/intrapolate tracks to stations without hits

Bonus: 4 vs 3 GEM stations,

 dependence on the number of MC tracks Clone/ghost probability

Time performance

The bad news is that it strongly depends on the number of track to reconstruct. The more tracks, the slower the code.

The good news is that still it is faster I've ever expected:
with 2 tracks per event:
------------------- PndGemFindTracks : Summary

Events:	10000	
Tracks:	22760	(2.276 per event $)$
Time:	2.72827 s	$(0.000272827 \mathrm{~s}$ per event $)$
		$(0.000119871 \mathrm{~s}$ per track $)$

with 10 tracks per event:

Events:	1000	
Tracks:	9735	(9.735 per event)
Time:	9.09496 s	(0.00909496 s per event)
		(0.000934254s per track)

Conclusions

- A first, running version of track finder for GEM detector has been developed
- It is tested, has efficiency of some 95% efficiency for events with reasonable number of tracks
- Momentum seed for the genfit is $\sim 2 \%$ away from the mean, with resolution of less than 5%
- Without any time optimization about 1000-1000 tracks are found per second (0.1-1 miliseconds per track)

Problem with GEM geometry

Reported by
Stefano,
there is overlap between middle GEM station and EMC detector.

Update on GEM geometry

Previous/updated GEM:

	z position	radius
1st station	120 cm	42 cm
	117 cm	45 cm
2nd station	150 cm	66 cm
	153 cm	56 cm
3rd station	180 cm	90 cm
	189 cm	74 cm

