A RECONSTRUCTION to OPTIMIZE the

PANDA MICRO-VERTEX-DETECTOR (MVD)

a Status Report of my Diploma Work

Leyla Atar

10. Dezember 2009

Monte Carlo Studies

Detector Simulations 0 00 Summary/Outlook

Motivation

Monte Carlo Studies

Detector Simulations

 $\frac{\Lambda}{\Lambda} \begin{array}{l} \text{Reconstruction} \\ \overline{\Lambda} \end{array} \\ \text{Reconstruction} \\ \end{array}$

Monte Carlo Studies

Detector Simulations 0 00

Summary/Outlook

- Four barrel layers
- Six disk layers

$$\overline{P} + P \longrightarrow \Lambda + \overline{\Lambda}$$
$$\Lambda \longrightarrow p + \pi^{-}$$
$$\overline{\Lambda} \longrightarrow \overline{p} + \pi^{+}$$

Additional forward discs?

Summary/Outlook

Decay Length

 $(c * \tau)_{\Lambda} = 7.826 \pm 0.2511$ cm $(c * \tau)_{\overline{\Lambda}} = 8.007 \pm 0.2574$ cm Literature value is 7.89 cm

 $= \frac{1}{slope}$ JÜLICH

 $=\frac{L}{\beta\gamma}$

Back Propagation Method

$$P + \overline{P} \longrightarrow \Lambda + \overline{\Lambda} \longrightarrow P + \pi^- + \overline{P} + \pi^+$$

Case1:

 $P^P_{Lon} > 0$ $P^{\pi^-}_{Lon} > 0$

Monte Carlo Studies

Detector Simulations

0

Monte Carlo Studies

Detector Simulations

0

Monte Carlo Studies

Detector Simulations

0

Case2:

 $P^P_{Lon} > 0$ $P^{\pi^-}_{Lon} < 0$

Monte Carlo Studies

Detector Simulations

oo l

Summary/Outlook

Case2:

Monte Carlo Studies

Detector Simulations

oo l

Summary/Outlook

Case2:

Monte Carlo Studie

Detector Simulations $\circ \\ \circ \circ$

Only for one event

- Tracks of decay particles
- Vertices of Λ and $\overline{\Lambda}$
- Higher density of points close to the vertex

A Reconstruction @ 2 GeV/c with MC-Truth (phase space)

 $M_{\Lambda} = 1.11567 \pm 0.00005 \, GeV/c^2$ Literature value is 1.1157 GeV/c^2 $(c * \tau)_{\Lambda} = 7.18 \pm 0.18$ cm Literature value is 7.89 cm

Efficiency is 82%

$\overline{\Lambda}$ Reconstruction @ 2 GeV/c with MC-Truth (phase space)

 $M_{\overline{\Lambda}} = 1.11568 \pm 0.00006 \, GeV/c^2$ Literature value is 1.1157 $\, GeV/c^2$

 $(c * \tau)_{\overline{\Lambda}} = 7.24 \pm 0.18$ cm

Literature value is 7.89 cm

A Reconstruction @ 3 GeV/c with MC-Truth (phase space)

 $M_{\Lambda} = 1.11573 \pm 0.00006 \, GeV/c^2 \label{eq:main}$ Literature value is 1.1157 GeV/c^2

 $(c * \tau)_{\Lambda} = 5.35 \pm 0.11$ cm

Literature value is 7.89 cm

Summary/Outlook

- A simple and fast method to find Λ and $\overline{\Lambda}$ decay vertices
- First simulations of $\overline{p}p \rightarrow \Lambda \overline{\Lambda}$ at 2 GeV/c and 3 GeV/c

In the future

- Using reconstruction instead of MC hit
- Reconstruction of the reaction $P\overline{P} \rightarrow \Lambda\overline{\Lambda}$ with MVD+TPC (or MVD+STT)
- Consideration of realistic angular distribution

