Simulation for Barrel DIRC: Status and Plan

Dipanwita Dutta GSI, Darmstadt

PANDA Collaboration Meeting, GSI Dec. 2009

Outline

- Geometry of DIRC
- DRC Class Structure in PANDAROOT
 - Bar Hits and Photon Detector Hits
 - Details of Hit Producer
 - Results from Hit Producer
- Patterns in Photon Detector Plane
 - For different particle, mom, theta, mag field (on/off)
- Reconstruction Algorithms for DIRC
- Summary and Outlook

Present Geometry

Cherenkov Photons

Flow Chart : DRC Classes in PANDAROOT

Ideal Hit Producer and Bar Hits

PndDrcHitProducerIdeal :

Produce PndDrcHits from PndDrcBarPoints

- Bar Hits are the co-ordinate of the center of the bar in xy
- Gaussian Smearing of ThetaC (MC value) with σ =8 mrad (used now for Global PID)

 PndDrcHit : Int_t detID, TVector3 pos, TVector3 dpos, Double_t thetaC, Double_t errThetaC, Int_t index

Flow Chart : DRC Classes in PANDAROOT

Real Hit Producer and Photon Hits

- PndDrcHitProducerReal : Produce PndDrcPDHits from PndDrcPDPoints
 - Convolute with Photon Detector Efficiency
 - Wavelength dependent quantum efficiency of bialkali photocathode
 - Pixelisation of Photon Detector Plane
 - Grid of 6.5mm × 6.5mm in XY
 - Hits are center of pixel
 - Gaussian Smearing of Time with σ =50 ps
- PndDrcPDHit :

Int_t detID, TVector3 pos, TVector3 dpos, Double_t time, Double_t timeThreshold , Int_t index

Results from Hit Producer

Results from Hit Producer

Panda Collaboration Meeting, Dec. 2009

Results from Hit Producer

Panda Collaboration Meeting, Dec. 2009

Results of Hit Producer

Gaussian Smearing of the Time (σ =50 ps)

Box Generator: Mom =1 GeV, ϕ =10°, nEvents=100

Without Magnetic Field

Problem: Two ring structure, not understood

Panda Collaboration Meeting, Dec. 2009

Box Generator: Mom =4 GeV, ϕ =10°, nEvents=100

Without Magnetic Field

1301

Box Generator: Mom =1 GeV, ϕ =10°, nEvents=100

Without Magnetic Field

Box Generator: Mom =4 GeV, ϕ =10°, nEvents=100

With Solenoid Magnetic Field

201

Reconstruction Algorithm

 Reconstruction Input: (1) Charged track parameter

(2) Hit time and position (x,y) in Photon Detector plane

Possible Reconstruction Algorithms:
 Babar-Like Reconstruction:

<mark>Cosθ_c=1/βn</mark>

- (Ref. DIRC NIM paper for BaBar Experiment, NIMA 538(2005)281)
 - Look-up Table: (PMT/Bar define angle)
 - Likelihood method
 - Track maximum likelihood fit (track by track)
 - Event global likelihood fit
- Hough Transformation

- Fit the ring directly, standard method for shape recognition

Summary and Outlook

•New Geometry with splitting of Barrel for Beam Pipe : Working fine

 First step to Real Hit Producer introduced : Working fine Photon Detection Efficiency Simplified Pixelisation of Photon Detector Time Smearing
 Patterns in Photon Detector Plane Double Ring structure observed

Patterns in the Photon Detector Plane – to be understood
Study for Signal event (EvtGen) and Background (DPM)
Pattern Recognition and Reconstruction – next step

Back up Slides

Barrel DIRC Dimensions

