Hypernuclei status report

Alicia Sanchez Lorente

- 1. New event generator for $\overline{p} + {}^{12}C \rightarrow \Xi^{-} \Xi^{+}$ based on Urqmd.
- 1. Low kaon identification studies based on tof measurements.

Bundesministerium für Bildung und Forschung

New event generator for \overline{p} + ¹²C-> $\Xi^ \Xi^+$ \overline{p} +Nucleus-> Ξ^- + Ξ^+ at 3GeV/c hyperon-Cross section 2µb antihyperon production 12**C** UrqmdSmm, extended version at threshold; Kaons (A. Galoyan, J.Pochodzalla, V.Uzhinski) rescattering trigger [I] p O Hyperons Potential (Λ , Ξ , Σ ..) \bullet 3 GeV/c Ξ-

Background reactions and $\Xi^{\scriptscriptstyle -}$ + $\Xi^{\scriptscriptstyle +}$ generated by Urqmd

low kaon identification based on tof measurement hyperonantihyperon \overline{p} +Nucleus-> Ξ^- + Ξ^+ at 3GeV/c production 12**C** at threshold; Kaons Cross section 2µb \bullet rescattering trigger \overline{p} + p , cross section 50 mb p C \bullet 3 GeV/c Ξ-

- 1. Background reactions are a factor 25000 larger than $\Xi^- + \Xi^+$ prod.
- 2. background suppression is mandatory
- 3. low momenta kaons (Ξ^+ annihilation) can be used to tag the $\Xi^- + \Xi^+$ prod.

Possibilities:

> TPC/STT Use of (dE/dx) for PID

TPC/STT + TOF detector system for low kaon identification:

 \succ Start scintillator fibers ~1250 fibers

Stop tof barrel ~16 Slabs ~6 bars

STRATEGY : identification of at least one kaon per event. (kaon multiplicity trigger)

UrqmdSmm Calculations, 100 K events 180 🗆 160 140 120 ¹⁰⁰ 60 40 20 0 0.2 0.3 0.4 0.1 transversal momentum (GeV/c)

associated postive kaon distribution at generation vertex

Requirements :

Central Tracker + Tof radius ≈ 0.5 m

 $P_T = 0.3*Q*B*Radius$

- B = 2 T, kaon Pt \approx 0.3 GeV/c
- B = 1T, kaon Pt = 0.150 GeV/c

B = 0.5, kaon Pt = 0.075 GeV/c

SciF+TPC + TOF

•Tof barrel (STOP)

- •SciF + SiPMT (START)
- ~ 450 ps
- Track Length + P
 - **P/Mass** = $\beta * \gamma$

Time resolution ~ 80-100 ps

•TPC + Others (SCT): tracking

Tof Studies at different magnetic field values

- 1. magnetic field value 1 T
- 2. start(450 ps)
- 3. annihilation products from Ξ^+

Tof Studies at different magnetic field values

- 1.

Kaon identification acceptance:

- 1. accepted kaons tracks at 1 T, requiring hit on SciF, TPc and TOF barrel.
- 2. Start(80 ps)

- 1. accepted kaons tracks at 0.5 T, requiring hit on SciF, TPc and TOF barrel.
- 2. Start(80 ps)

- Tagging on at least one kaon.
- Secondary target: MC provides about 1 5000 Ξ stopped, out of 200 k generated events

550 reco. kaons

8900 reco. kaons

Cut on accepted kaon candidates

Tof Studies at different magnetic field values

Conclusions:

- 1. Multiplicity kaon trigger based on TOF will be not enough.
- 2. Tracking information from Sec. Target has to be used complementary.
- 3. the start detector has to have a time resolution similar to the tofbarrel.
- 4. A possible start detector solution: diamond detector with a time resolution of about 90 ps, example. HADES)
- 5. The most of the kaons are emitted into the forward region, which suggests the possibility of a tof forward disc inmediatly after the disc dirc can be useful.

Production of double hypernuclei at PANDA

- Cross section 2µb
- $\Xi^- + \Xi^+$ hour
- Ξ⁻ p -> ΛΛ + 28 MeV
- energy release may give rise to the emission of excited hyperfragments
- Two-step production mechanism requires a devoted setup

Luminosity 10³² cm⁻²/s to 7.10⁵

\overline{p} +Nucleus-> Ξ^- + Ξ^+ at 3GeV/c

Radiation hardness study

• Sim. 2.3 10⁴ n+p/s at av. 25 MeV

• Rad. Damage: electron irrad. vs (NIEL) of p/n had. damage ~64 times stronger annealing will not help 12 days at 5 10⁶ collions/s

ADC spectra from SiPMT before and after radiation with 3 10⁸ electrons

by S. Sanchez Majos

