Drell-Yan Di-Muon Production in PANDA

Marco Destefanis
for the PANDA Collaboration

Università degli Studi di Torino

PANDA Collaboration Meeting

GSI, Darmstadt (Germany) December 07-10, 2009

Overview

Motivation

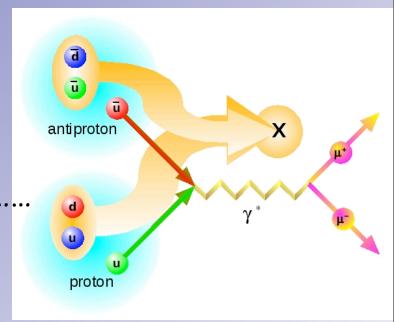
- Drell-Yan process and background
 - > A. Bianconi Drell-Yan generator
 - > Cut studies

Investigation of Drell-Yan asymmetries

Summary

Drell-Yan Process and Background

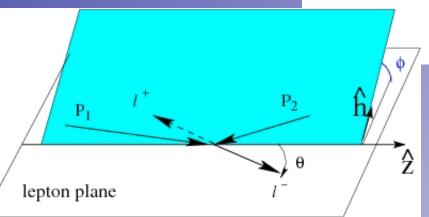
Drell-Yan: pp -> μ⁺μ⁻X


cross section
$$\sigma \sim 1$$
 nb @ s = 30 GeV²

• Background: pp -> $\pi^{\dagger}\pi^{-}X$, $2\pi^{\dagger}2\pi^{-}X$,.....

cross section $\sigma \sim 20-30$ mb

 m_{μ} = 105 MeV/c²; m_{π} 140 MeV/c² average primary pion pairs: ~ 1.5


Background studies: needed rejection factor of 10⁷

Drell-Yan Asymmetries

UNPOLARISED

$$\begin{array}{ccc} \textbf{\textit{Collins-Soper frame}} & \frac{d\sigma^o}{d\Omega dx_1 dx_2 d\mathbf{q}_T} &=& \frac{\alpha^2}{12Q^2} \sum_f e_f^2 \left\{ \left(1 + \cos^2 \theta\right) \mathcal{F} \left[\bar{f}_1^f f_1^f \right] \right. \\ & \left. + f \sin^2 \left(\cos 2\phi \right) \mathcal{F} \left[\left(2 \hat{\mathbf{h}} \cdot \mathbf{p}_{1_T} \, \hat{\mathbf{h}} \cdot \mathbf{p}_{2_T} - \mathbf{p}_{1_T} \cdot \mathbf{p}_{2_T} \right) \underbrace{\bar{h}_1^{\perp f} \, h_1^{\perp f}}_{M_1 \, M_2} \right] \right\}$$

SINGLE-POLARISED

$$\frac{d\sigma}{d\Omega dx_1 dx_2 d\boldsymbol{q}_{\scriptscriptstyle T}} = \frac{d\sigma^o}{d\Omega dx_1 dx_2 d\boldsymbol{q}_{\scriptscriptstyle T}} + \frac{d\Delta\sigma^\uparrow}{d\Omega dx_1 dx_2 d\boldsymbol{q}_{\scriptscriptstyle T}}$$

$$\begin{split} &\frac{d\Delta\sigma^{\uparrow}}{d\Omega dx_{1}dx_{2}d\mathbf{q}_{T}} = \frac{\alpha^{2}}{12sQ^{2}}\sum_{f}e_{f}^{2}|\mathbf{S}_{2T}|\left\{\left(1+\cos^{2}\theta\right)\left(\sin(\phi-\phi_{S_{2}})\right)\mathbf{F}\left[\hat{\mathbf{h}}\cdot\mathbf{p}_{2T}\frac{\bar{f}_{1}^{f}f_{1T}^{\perp f}}{M_{2}}\right]\right\} \\ &-\sin^{2}\left(\sin(\phi+\phi_{S_{2}})\mathcal{F}\left[\hat{\mathbf{h}}\cdot\mathbf{p}_{1T}\frac{\bar{h}_{1}^{\perp f}h_{1T}^{f}}{M_{1}}\right]\right\} \\ &-\sin^{2}\theta\sin(3\phi-\phi_{S_{2}})\mathcal{F}\left[\left(4\hat{\mathbf{h}}\cdot\mathbf{p}_{1T}\left(\hat{\mathbf{h}}\cdot\mathbf{p}_{2T}\right)^{2}-2\hat{\mathbf{h}}\cdot\mathbf{p}_{2T}\mathbf{p}_{1T}\cdot\mathbf{p}_{2T}-\hat{\mathbf{h}}\cdot\mathbf{p}_{1T}\mathbf{p}_{2T}^{2}\right)\frac{\bar{h}_{1}^{\perp f}h_{1T}^{\perp f}}{2M_{1}M_{2}^{2}}\right]\right\} \end{split}$$

$$U = N(\cos 2\phi > 0)$$

$$D = N(\cos 2\phi < 0)$$

Asymmetry
$$A = \frac{U - D}{U + D}$$

TMD: K_T-dependent Parton Distributions

Twist-2 PDFs
$$f_1(x) = \int d^2k_T f_1(x, k_T)$$

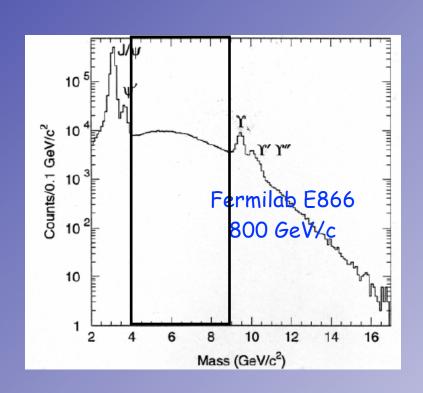
$$\mathbf{P} = \mathbf{S} \mathbf{P} + \mathbf{k}_{\mathrm{T}}$$

$$\mathbf{f}_{1} = \mathbf{0}$$

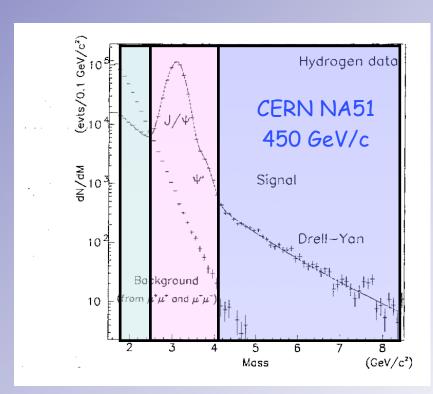
$$\mathbf{g}_{1L} = \mathbf{0} - \mathbf{0}$$

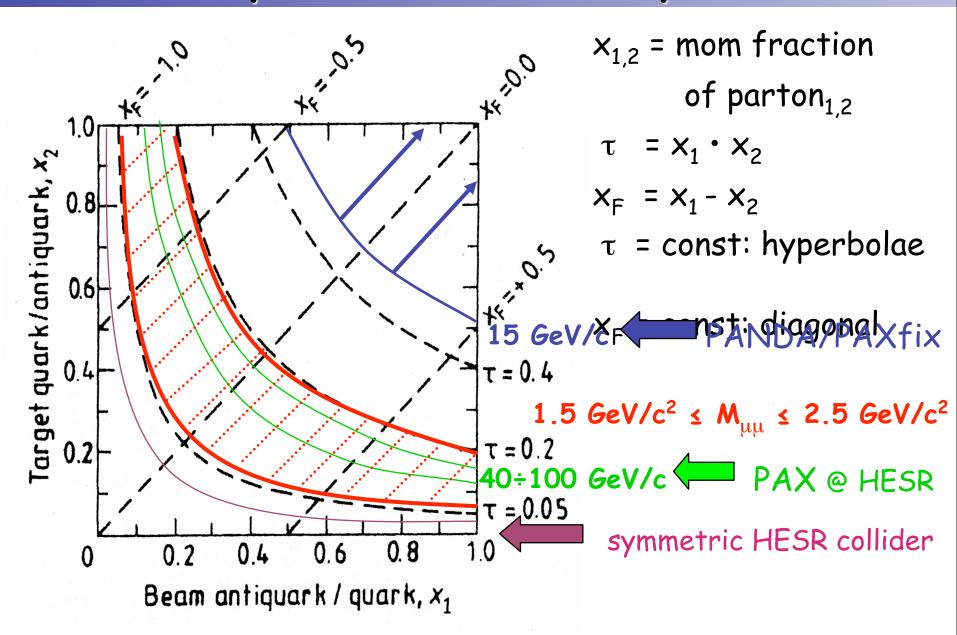
$$\mathbf{g}_{1T} = \mathbf{0} - \mathbf{0}$$

$\mathbf{f}_{1\mathrm{T}}^{\perp} = 0$	-		Sive	ers	
		V	_	7 6	


Distribution		Chirality	
function	S	even	odd
	U	f_1	h_1^{\perp}
Twist-2	L	g_1	\mathbf{h}_{1L}^{\perp}
	T	f_{1T}^{\perp}, g_{1T}	h_1, h_{1T}^{\perp}

$$h_{1L}^{\perp} = \bigcirc \longrightarrow$$


$$h_{1T}^{\perp} = \bigcirc$$

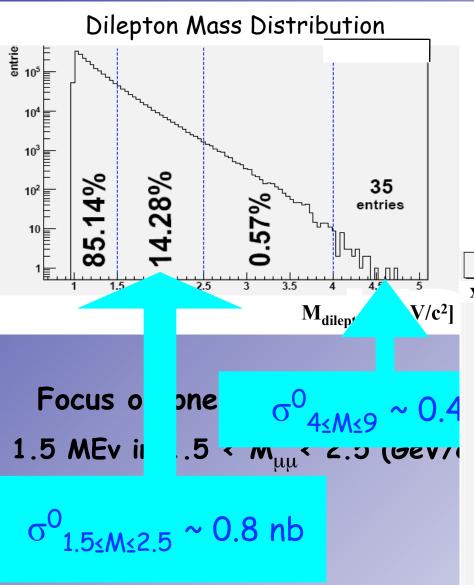

Di-Lepton Production $\overline{p}p \rightarrow \ell^+\ell^-X$

Phase space for Drell-Yan processes

A. Bianconi Drell-Yan Generator for pp

- Antiproton beam
- · Polarized/Unpolarized beam and target
- · Drell-Yan cross section from experimental data
- · Selects event depending on the variables:

$$x_1, x_2, P_T, \vartheta, \varphi, \varphi_S$$

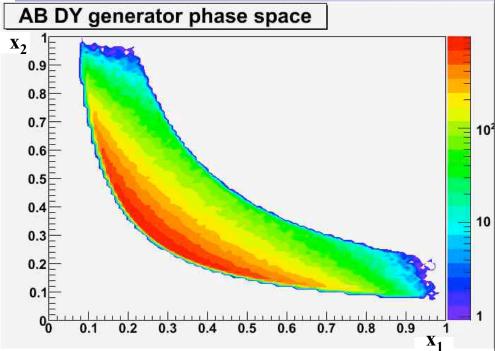

from a flat distribution
$$\frac{d\sigma}{dx_1 dx_2 dP_T d\Omega} = \frac{K}{S} \times S(x_1, x_2) \times S'(P_T) \times A(\vartheta, \varphi, \varphi_S)$$

- Cross section:

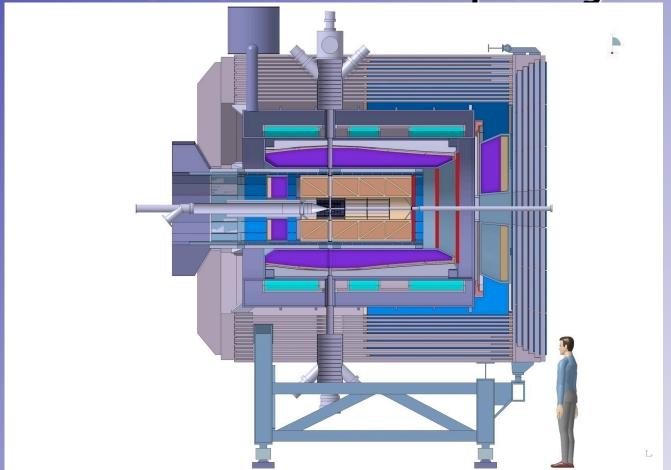
 A. Bianconi, Monte Carlo Event Generator DY_AB4 for Drell-Yan Events with Dimuon
 Production in Antiproton and Negative Pion Collisions with Molecular Targets,
 internal note (PANDA collaboration)
- A. Bianconi, M. Radici, Phys. Rev. D71, 074014 (2005) & D72, 074013 (2005)

1 Diancani an Vivihan av 10806 0016v1

DY @ 15 GeV/c — pp->μ⁺μ⁻X



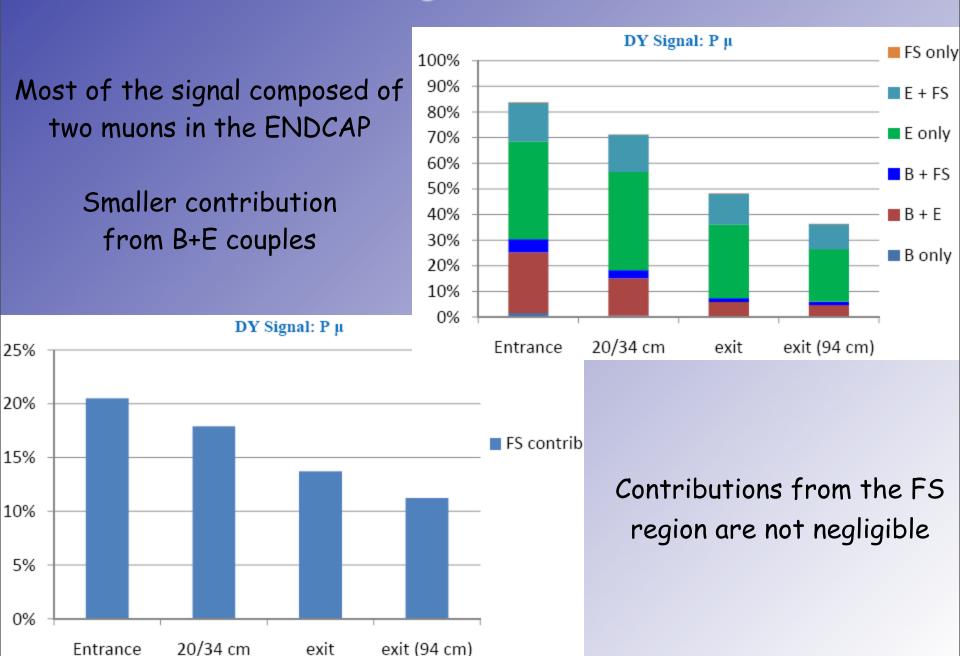
$$\sqrt{s} = 5.5 \text{ GeV}$$


A. Bianconi Drell-Yan Generator

[1]

 layout studies for muon id with ABDYG (1.5 MEV)

PANDA Detector Setup Design


Signal: A. Bianconi Drell-Yan generator

Background: PYTHIA8 generator

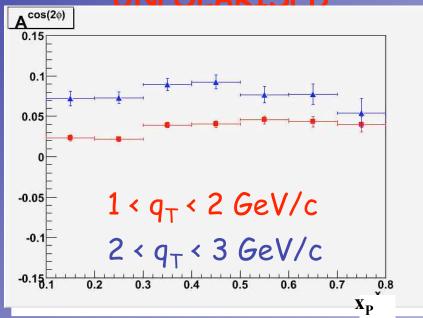
Framework: Muon Independent Simulation Software (MISS)

Next step: complete the work in PANDAROOT

ABDYG Signal Distribution

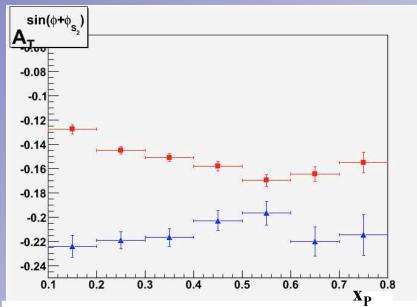
Background and Cuts

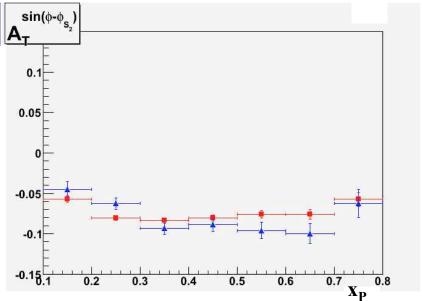
Sources of background


- Primary background: Primary π & Secondary μ from Primary π
- Secondary background: Secondary π & Secondary μ from Secondary π

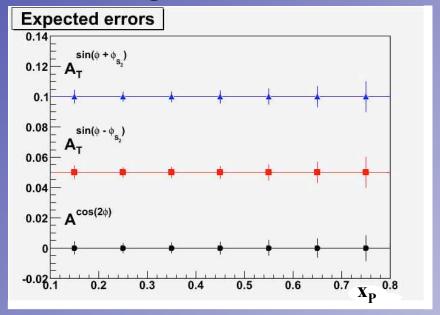
Cuts and their effect on signal Rejection factor of 10⁷

	Iron	At least 1 hit in the first 2 layers	q _T > 0.75 GeV/c		
Signal Primary		Next Step: Kinematic refit 103			
Background	thickness				
Secondary	Almost no effect	Rejection ≈ 10 ⁴	Rejection >5·10 ⁶		

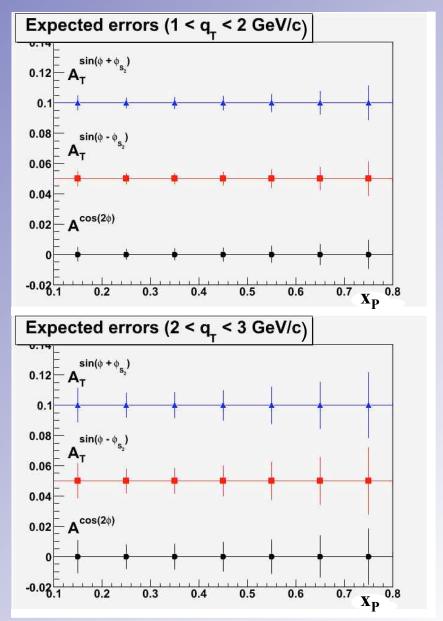

DY Asymmetries @ Vertex



500KEv included in asymmetries


SINGLE-POLARISED

DY Asymmetries @ B(20cm)-E(34cm)


Statistical errors for 500KEv generated

$$R = L \cdot \sigma \cdot \varepsilon$$

$$= 2 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1} \times 0.8 \cdot 10^{-33} \text{cm}^{2} \times 0.33$$

$$= 0.05 \text{ s}^{-1} \sim 130 \text{ Kev/month}$$

Summary

- Interest on Drell-Yan studies
 - 1.5 < $M_{u,u}$ < 2.5 GeV/ c^2
 - Cuts for background rejection
 Rejection factor achieved for secondary background: > 5 10⁶
 - Kinematically constrained refit still to be investigated
- Few months of data taking are enough to:
 - evaluate unpolarised and single-spin asymmetries with good accuracy \Rightarrow investigate their dependence on $q_{T,\mu,\mu}$

• Extensive simulations needed on the GRID (~108 Ev)

WITH DANID ADOOT in and an tar