

Status of STT Activities in Jülich

V. Kozlov, G. Kemmerling, H. Kleines, P. Kulessa, H. Ohm, S. Orfanitski, N. Paul, K. Pysz, M. Roeder, V. Serdyuk, P. Wintz, P. Wüstner IKP & ZEL at FZJ

Outline

- STT design
- Prototype construction
- Readout
- High rate test (reminder)

STT Design

4200 straws

- 20-26 planar layers, close-packed with 15µm gaps
- high mechanical rigidity & precision at ∆p=1bar
- 8 skewed layers (±3°) for 3d-reco
- Ar/CO₂ at p ~ 2 bar
- σ_{rφ} ~ 150μm, σ_z ~ 2.9 mm
- X/X₀~1%
- high efficiency ($N_{r_{\phi}} > 12$ hits, $N_z \sim 8$)
- dE/dx capability (SQ / 23straws×8mm gas)

STT Prototype Development

Full scale prototype

- simplified mechanical frame structure (flange)
- check straw layer layout
 - mechanical properties
 - skewed straw layers
 - mounting & assembly method
 - attachment to frame
- gas supply scheme
- electric connection
- input for final STT design

Juelich: 1200mm straw tube length Frascati: 1500mm tube length

Straw Layer Technique

Measurements

- Straw (outer) diameter
 - 10.085mm at ∆p=1bar
 - 10.055mm at ∆p=0bar
- Straw distance 10.1mm
- 15µm gap between adjacent straws

Layer technique

- old: straws glued to double-layer
- new: straws glued to 4-fold layer with increased rigidity
- still possible to exchange single (faulty) straws

block of 6 straw layers glued together

High rigidity & precision of straw layer block

Dec-8, 09, PANDA Meeting

Peter Wintz

STT Prototype (1)

- 1 full hexagon sector with 26 layers
- 1 sector w/o outer 6 layers
- all straws w/o wire
- next: assembly of straw layers with wire
- 700 new straws
- add to setup
- precision test with reconstructed tracks

wired straws in red

STT Prototype (2)

- Straw double-layers attached by 2×2 pins to mechanical frame
- innermost and outermost (thin) alignment rings later
- 6 outer layers (barrel shape), glued together

Skewed Layers

8 Skewed layers:

- skew angle ±3°
- 2×5 short straws per layer (total: 480)
- rohacell spacers at corners and between last skewed & next axial layer
- additional material (plugs, ..) to be included in simulation (X/X₀~1%)
- electric wire, grounding & gas connection
 between short straws in same sector
- disentangle by software offline

Gas Supply

Manifolds

- 6× per 26 straw layers, 4 straws connected in series (even no of straws)
- X/X₀ ~ 0.9% (max.), ~ 0.5% (mean) (π×1 mm nylon)
- electric connection difficult through gas lines

Optional: Gas manifolds at forward end of STT

Dec-8, 09, PANDA Meeting

Peter Wintz

Self-Supporting Straw Layers

Strong rigidity of close-packed, pressurized straw layers (3kg Pb on 30µm mylar film tube)

Dec-8, 09, PANDA Meeting

Peter Wintz

PANDA STT Readout

Readout concept

- investigate new dE/dx capability
- first results with (standard) electronics promising (K.Pysz, V.Serdyuk)
- challenge: combine dE/dx with ~1ns time resolution
- new readout development (2010 ➡)
- resolution measurements: $dE/dx \leftrightarrow \Delta t$
- decide on strategy
- experience from COSY-STT (2700 straws)
 - discr.+TDC readout
 - calibration & resolution

Beam Test in Jun 07

COSY-TOF beam area

Straw Aging Results

Straw no	Gas mixture @ 1.65 bar	ΣQ (C) in 199h	Aging seen	
			∆ G/G	
1 – 8		0.72	< 3%	
9 -16	Ar/ CO ₂ (10%)	0.58	< 7%	
17 – 20	Ar/ CO (30%)	1.23	no	
21 – 24		0.79	no	
25 - 32	Ar/ C ₂ H ₆ (10%)	0.87	no	

- no loss for straws with highest charge load
- max. 7% efficiency loss for some, not all straws
- localized efficiency drop strongly correlated with beam intensity profile

- after beam time straws exposed to ⁵⁵Fe source along tube
- measure gas gain (reduction = aging) by signal amplitude height

Longitudinal position (cm)

PANDA STT Rate Numbers

- p(bar)p simulation (Andrei Sokolov)
- event rate 2×10⁷ s⁻¹
- additional MVD material (supports) not included
- all numbers for innermost straw layer (worst case)
- 3% decrease for every next layer

	Peak Rate (z=2cm) kHz/cm	Mean Rate kHz/cm	Rate / Straw kHz	Peak ΣQ C/cm	Mean ΣQ C/cm	Aging seen ∆G/G	
p(bar) p - Simulation	14	6	700	0.8	0.15		Ar/CO ₂ (20%)
measured @ COSY	2300				0.7	<3%	Ar/CO ₂ (10%)
					0.6	<7%	
					1.2	none	
					0.8	none	AI/CO ₂ (30%)
					0.9	none	Ar/C ₂ H ₆ (10%)

STT Strategy

PANDA operation years (1/2 year live-time)

- no general aging expected up to 8 years
- localized (z=2±2cm) aging may appear after 2 years
 - benefit from high number of layers
 - replace some straws after few years
- Ar/CO₂ (20-30%) preferable
- results confirm aging tests by other groups (dry Ar/CO₂ aging-free)