

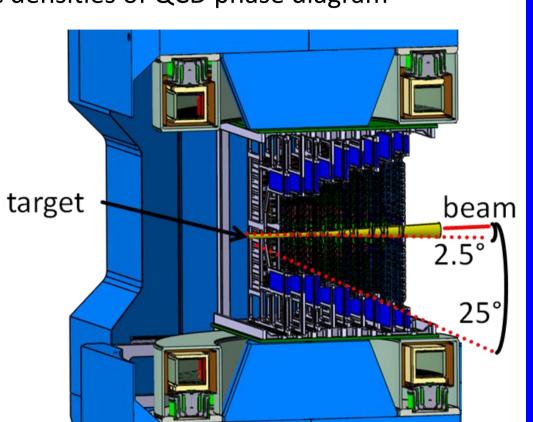
Progress Towards the Development of Cooling Demonstrator of the CBM Silicon Tracking System

Kshitij Agarwal, for the CBM Collaboration

Eberhard Karls Universität Tübingen, Tübingen, Germany

CBM Silicon Tracking System

≤ -10°C

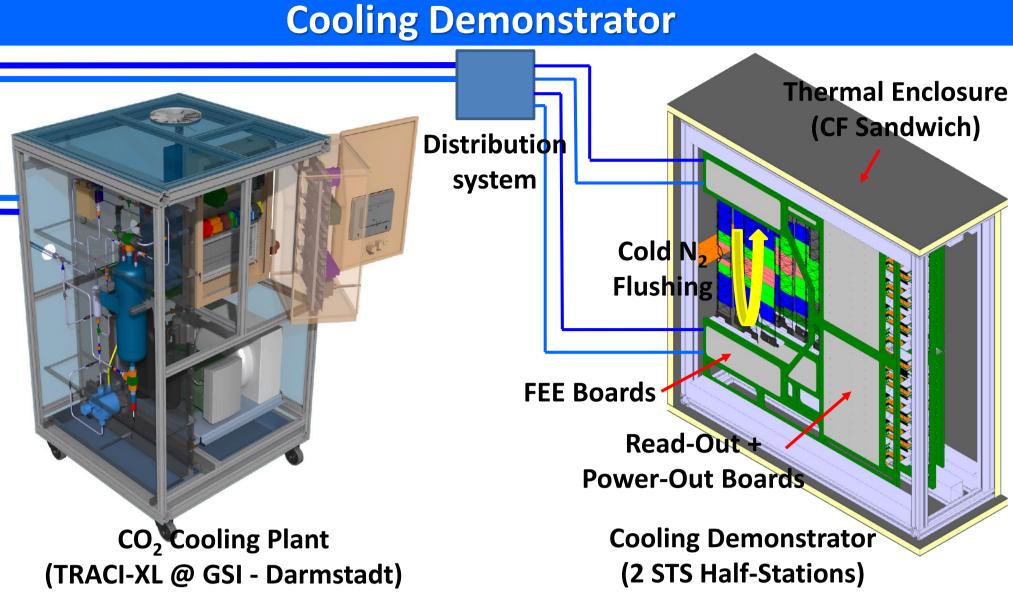

- CBM aims to explore regions of high-baryonic densities of QCD phase diagram
- Requires detection of rare probes

 $\rightarrow 10^5 - 10^7$ collisions/sec (Au-Au)

- → Momentum Resolution $\Delta p/p \approx 1-2\%$
- → High track reconstruction efficiency with pile-up free track point determination
- Silicon Tracking Station: Key to CBM Physics
- → 8 Tracking Stations inside 1Tm field
- → 896 double-sided micro-strip sensors
- \rightarrow Low Material Budget: 0.3% 1.5% X_0 /station
- → Radiation tolerance: $\leq 10^{14} \, \text{n}_{\text{eq}} \, \text{cm}^{-2}$ Sensor temp.
- → Signal-to-noise ≥ 10
- → Self-triggering front-end electronics located outside acceptance Power dissipation
- \rightarrow ~1.8 million r/o channels + ~16000 r/o ASICs "STS-XYTER"

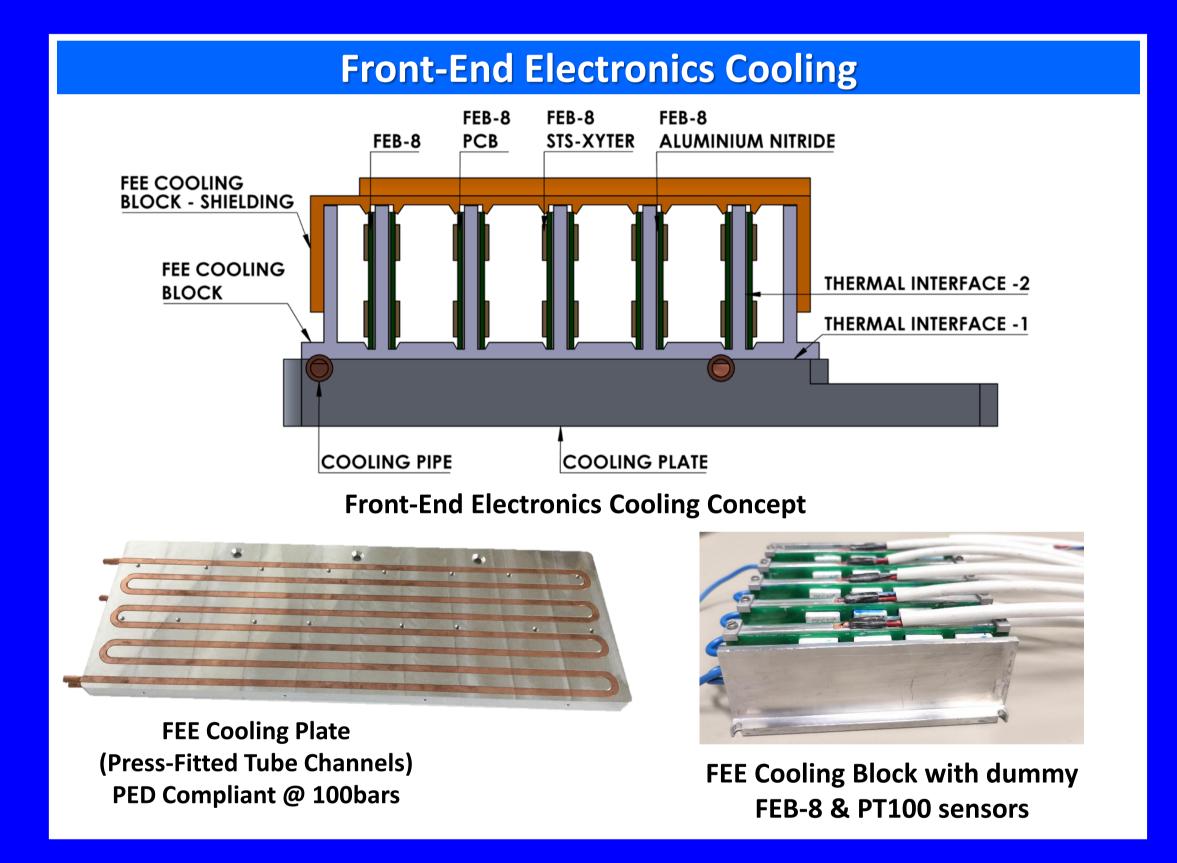
Bi-Phase CO₂ cooling at -25°C for FEE

Forced N₂ cooling directly for sensors



STS in Dipole Magnet

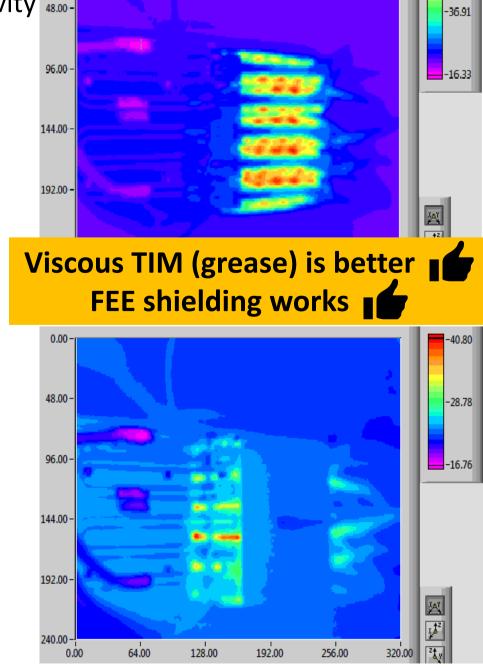
~40kW in ~2m³


Why Bi-Phase CO₂?

- High volumetric HTC → Smaller tubes
- Isothermal evaporation
- High pressure → Thermal Stability

Cooling & Integration Challenges

- Sensor cooling with least X₀/station
- RH << 1% @ 25°C to avoid condensation
- High-density feedthroughs, transfer lines



Optimisation of CO₂ Operational Parameters STS Unit 01 STS Unit 01 T-p v/s L Analysis Fluid Temperature Flow Pattern Map - - - Wall Temperature (MATLAB + REFPROP) **Thermal FEA** (SolidWorks) Length [m] STS Unit 01 Intermittent Max. FEE temp. < -10°C Mist Velocity [kg/m Annular 800 Fr = 7g/s**Cooling Demonstrator FEE Operational Parameters** 600 Fr = 5g/s $T_{CO2} = -25$ °C, Tube $D_{eq} = 3.6$ mm (O.D. 6mm), L = 2m Quarter-Station # P_{FEE} (W) Fr (g/s) ΔP (bar) Fr = 3g/s265 0.0342 Unit 0 Strat-Wavy 609.5 0.1127 Unit 1 Unit 2 344.5 0.0459 **Vapor Quality**

Optimisation of Thermal Interfaces

- Thermal Interface Materials (TIMs)
- → Increase area of contact & thermal conductivity 48.00-
- Relative measurements with water as coolant
- \rightarrow Flattening the interfaces (~10µm) improves the results substantially
- → Good agreement (± 10%) b/w exp. FEA

TIM Optimisation				
T _{H2O} = 15°C, Q = 160W, Fr = 11.1g/s				1
Interface	Interface	Maximum Fin Temp. (°C)		
#1	#2	Exp. (PT100)	Thermal FEA	
Grease	Grease	29.7	32.0	
	C-Foil	29.6	32.0	
C-Foil	Grease	33.7	32.1	
	C-Foil	33.9	32.1	
TIM Properties				
	k (W/m·K)	d (μm)	R_{Θ} (d/k; m ² ·K/W)	
Grease	5.0	30	6.0 x 10 ⁻⁶	
C-Foil	16.0	125	7.8 x 10 ⁻⁶	

Conclusion and Outlook

- Ongoing R&D for cooling demonstrator with 2 STS Half-Stations
- Bi-Phase CO₂ cooling is an optimal solution for cooling the STS electronics
- → T-p v/s L analysis + Thermal FEA model developed to computationally characterise FEE cooling setup
- → Characterization parameters for FEE cooling of first 2 STS Half-Stations with pressfitted tube channels obtained
- \rightarrow Experimental verification with CO₂ needed upon cooling plant completion
- → Thermal interface optimisation shows that using grease increases thermal efficiency
- → Further options (e.g. Graphite tapes etc) will also be studied
- Forced N₂ cooling on sensors needed to minimise radiation damage → Realisitc mechanical setup with minimum material budget inclusion is desired
- Thermal characterization of HV-LV, optical etc connectors is foreseen
- Operational experiences from mSTS@SIS18 (Aug-Sep'18) for demonstrator integration

References

- J. Heuser et al., Technical Design Report for the CBM Silicon Tracking System (STS) (2013)
- E. Lavrik, 'Development of quality assurance procedures and methods for the CBM Silicon Tracking System', PhD Thesis, Uni. Tübigen (2017)
- B. Verlaat et al., Proceedings of 10th IIR Gustav Lorentzen Conference on Natural Refrigerants (2012), GL-209
- Z. Zhang, CERN-THESIS-2015-320 (2015) M. Rauch, CERN-THESIS-2015-247 (2015)

