

<u>Mechanical Status for the</u> <u>Barrel of Panda</u>

Cooling System of One Slice Cooling System of the Barrel Status of the 480 Crystals' Prototype Conclusion

Cooling System of One Slice

Cooling System of the Barrel

Barrel's Cooling System

2 Slices Input / Output

Barrel's liquid coolant distribution

Scheme of the Barrel

Barrel

Barrel EM Calorimeter

Input / Output Manifolds

DETECTION

Barrel's Cooling System

Insulation of the Input / Output Pipes

Barrel's Cooling System

Cable runs for the Cooling Pipes

- Need to find the best position for the Cooling Machine
- Cooling system disconnected during Barrel displacement ??

<u>Status of 480 Crystals'</u> <u>Prototype</u>

480 Crystals' Prototype

RED DETECTION

Conclusion :

> Job on stand-by :

Barrel

• The design of the Back Plates and the Support Beam (depends on the design of the Inserts)

• The design of Upper Cooling System (depends on the passage of the FEE cables)

> Job to be finished :

- Insulation of the slices and services
- The Vertical slice type 2
- Tests of the 480 Crystals' prototype
- ➤ Job to do :
 - Fixations of the services
 - Calculation of the pressure drop of the Cooling System
 - Study of the Cooling machine for the Barrel and the Endcaps

Status of the barrel EMC studies at Orsay

Vacuum leakless cooling system

Crystals dimensions control

Optical fiber in front of crystal ...

Proto 60 @ 90°

Vacuum leakless system prototype with $\frac{1}{4}$ barrel (based on CERN dvpt)

Discussion with P.Bonneau (Cern) and Greg Hallewell (CPPM) for a better understanding of the vacuum leakless system and the choice of the fluid and compatibility with materials

Elements ordered and in 2010 this system will be built for testing

Crystals dimensions control

Dan)da

Barrel EM Galorimeter

November, 2009

PbWO4 crystal production

Dimension analysis report

Barrel EMC Note P. Rozier¹⁾

The PbWO4 crystal lots B1, B6 and B7 for the EMC barrel have been delivered and measured on the ACCOS machine. Measurement datas are given by Dormeney ²). It has been analysed and compared with the mechanical tolerances. The result is summarized in board 1.

Å total of 1994 crystals on the 11360 composing the EMC barrel have been produced. It is composed of the pairs Left and Right of the types 1 and 9. Few percent of additional crystals have been delivered (between 1.6% and 4.7%).

The crystal dimensions, regards to their tolerances, have been checked. Initially, the tolerance is <u>0/-100um</u> but the acceptance threshold of this analysis has been set to 5/-105µm. It considers the possible precision mistake of the ACCOS machine, and aims to reject fewer crystals without disturbing the mechanical mounting. Finally, between 41 crystals for the type 1 Left and 6 crystals for the type 9 Left are completely **out of tolerances (up to 200**µm) which represents 5 % in mean of the number of crystals.

The additional crystals produced equilibrate these numbers and finally there are between 93.4 % (type 9R) and 99.8% (type 1R) of good crystals. The main default is the under length (less than 200 mm). Fortunately it will not affect the mounting possibility inside the alveolus.

Board 1: Production summary for the barrel (05/11/2008)				
	Number 1L	Number 1R	Number 9R	Number 9L
Lot B1	363	21		
Lot B6	167	113	330	
Lot B7	169	636		325
Theory	640	640	320	320
Produced	669	670	330	325
%	104,6	104,7	103,1	101,8
Total barrol	11360			
Total produced	1994			
Out of tolesance (>6µm;<-106µm)	41	31	31	8
% of good crystals	98,1	୫୫,ଶ	93,4	99,7

All details of this analysis are available in the EXCEL file "Mechanical study Lot_B1_B6_B7.xls".

To conclude, the production is satisfactory.

Proto 60 modification => 90°

Add of a aluminum block to hold the crystal weight. Screwed directly on the back if the inserts

Rotation at 90° completed

Optical fiber tests

The calibration can be done with optical fiber placed in front of the crystals

Test with a blue led => loss 10% (reference: direct light fiber @0° in PMT)

A prism can hold the fiber and reflect at 90° using a VM2000 foil

Without prism but fiber at 90° taped on the PMT surface => gain 10%

The use of a fiber in front of the crystals must be studied and also its fixing. But this basic test shows promising result => need more studies (with Bochum bench test)

