
Deep Learning Techniques for Track
Reconstruction in PANDA

Adeel Akram
Uppsala University

on behalf of the PANDA Collaboration
adeel.akram@physics.uu.se

PANDA Collaboration Meeting
4-8 June 2018
Stockholm, Sweden

1 / 16



Outline

Conventional tracking approach

Motivation for new methods

Intro to Machine Learning

Deep Learning

Programing Frameworks

Summary

2 / 16



Track Reconstruction

Common approach in Nuclear and
Particle Physics (NPP):
Track finding

- Pattern recognition and/or
classification

- Find tracklets

- Find ghost tracklets

Track fitting

- Input: tracklets

- Output: track kinematics

3 / 16



Track Reconstruction

Conventional tracking methods suffer one or more of the following issues.
These models

Rely on linear dynamic models

Are serial in nature

Scale badly with track multiplicity

Consume huge computing resources

An alternate approach is using Machine Learning (ML) methods.

Pattern recognition (Track finding)

Extraction of track parameters (Track fitting)

4 / 16



PANDA Experiment

5 / 16



Earlier work in Deep Learing for PANDA

Two student projects have been conducted at Uppsala University in 2017
using Deep Neural Networks. Two approaches has been used

Standard DNNs with Supervised Learning
- With 95% prediction accuracy

Convolutional DNNs with Supervised Learning
- With 80% prediction accuracy

6 / 16



Machine Learning

Ability of machines to learn complex
representations of data without
explicitly programmed for this
purpose.
Learning Schemes:

Supervised Learning
- Classification, Regression

Unsupervised Learning
- Clustering, Density

Measurements

Reinforcement Learning
- Robotics etc

Deep Learning: Coming next...

7 / 16



Deep Learning

Standard Learning: Deep learning is an approach to introduce multiple
hidden layers in the existing model. For example, we have

Deep Neural Networks
- Standard, Convolutional, Recurrent

Deep Boltzmann Machines

Deep Belief Networks

Adaptive Learning: Competitive hypotheses are introduced in a way
that final outcome depends on current observation.

Hopfield Neural Networks

Elastic Nets

Gussian-sum filters

8 / 16



Deep Neural Networks (DNNs)

Figure: A three layered standard DNN

9 / 16



Mathematics of DNNs

Forward propagation:

z [l](i) = W [l].x (i) + b[l]

a[l](i) = ReLU(z [l](i))

ŷ (i) = â[l](i)

Where,
z : linear equation
b: bias or intercepts
W : weight matrix
ReLU: activation function
a: output of l th layer
ŷ : estimate of final layer

The prediction:

y (i)
prediction =

{
1, if ŷ (i) > 0.5
0, otherwise

Loss Function:

L(ŷ (i), y (i)) = −1/m
m∑
i

[ŷ (i) log(yi ) + (1 − ŷ (i)) log(1 − yi )]

10 / 16



Mathematics of DNNs

Error backpropagation
Using method of gradient descent:

dW [l] = ∂L
∂W [l]

db[l] = ∂L
∂b[l]

da[l−1] = ∂L
∂a[l−1]

dz [l] = da[l].g
′
(z [l])

Parameter Update
Parameter update with the learning rate α:

W [l] = W [l] − αdW [l]

b[l] = b[l] − αdb[l]

11 / 16



Flow Diagram

12 / 16



Programming Framworks

C++ Environment:

Standard C++/ROOT

TMVA (Toolkit for
Multivariate Analysis)

etc.

Python Environment:

Python 3.0

Numpy for Vectorization

TensorFlow/scikit-learn

etc.

13 / 16



TrackML Competition 2018

14 / 16



Summary

Earlier work has shown ”promising” results

Different learning schemes and DNN topologies should be
investigated further

DNNs can be expanded both for online and offline data processing

15 / 16



What Next

Improvements on the earlier work

Conversion from Matlab to TensorFlow

Reproduce results using TensorFlow

16 / 16



Backup

16 / 16



Improving DNNs

Hyperparameters tuning

- Weights, bias, learning rate etc.

Regularization

- L2 Regularization

- Dropout Regularization

Optimization

- Adam Optimizer (used in PANDA, Stud. Project)

- Genetic Algorithm

Normalization

16 / 16



Additional Resources

16 / 16


