

First acceleration of heavy ion beams with a superconducting cw-Linac CH-structure at GSI

M. Miski-Oglu

K. Aulenbacher^{1,4}, W. Barth^{1,2,5}, M. Basten³, M. Busch³, F.
Dziuba¹, V. Gettmann¹, M. Heilmann², J. List¹, H. Podlech³, U. Ratzinger³, M. Schwarz³, S. Yaramyshev^{2,5}

¹HIM, Helmholtz Institute Mainz, Mainz, Germany ²GSI Helmholtzzentrum, Darmstadt, Germany ³IAP, Goethe Univ. Frankfurt, Frankfurt, Germany

⁴KPH, Johannes Gutenberg Univ., Mainz, Germany

⁵National Research Nuclear Univ., Moscow, Russia

M. Miski-Oglu , TASCA Workshop, 25.09.2018

FAIR requirements:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element" requirements:

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

Motivation and Main Design Parameter

- Operation mode cw
- Mass / Charge 6
- Beam current ≤1 mA
- Injection energy 1.4 MeV/u
- Output energy 3.5 7.3 MeV/u
- Output energy spread ±3keV/u

Production of element ²⁸⁸₁₁₅uup, ²⁸⁹₁₁₅uup, 30 *events*

(D. Rudolph, Lund Univ., PRL 111, 112502 (2013))

	GSI- Unilac	cw-Linac
Beam intensity(particle/s)	$6 \cdot 10^{12}$	$6 \cdot 10^{13}$
Beam on target	3 weeks	2 days

Experimental setup of the demonstrator at GSI 🛛 📻 📰

- Multigap drift tube cavity for the acceleration of protons and ions in the low and medium energy range
- Drift tubes are alternating connected to "+" and "-" potential
- **C**ross-bar-**H**-mode cavity \rightarrow CH cavity

RF Design of the Demonstrator Cavity

Parameters 217 MHz CH Cavity		
β		0.059
Frequency	MHz	216.816
Accelerating cells		15
Effective length $(\beta \lambda)$	$\mathbf{m}\mathbf{m}$	612
Diameter	$\mathbf{m}\mathbf{m}$	409
Tube aperture	$\mathbf{m}\mathbf{m}$	18 / 20
G	Ω	52
R_a/Q_0		3240
$R_a R_S$	$\mathrm{k}\Omega^2$	168
E_a (design)	MV/m	5.5
E_p/E_a		6.3
B_p/E_a	mT/(MV/m)	5.7

RF Tests of the Cavity at IAP and GSI

Integration into Cryostat

- HLI provides Ar¹¹⁺, Ar⁹⁺, Ar⁶⁺, He²⁺
 @ 1,4 MeV/u
- Steering magnets
- Additional Re-Buncher
- Quadrupole doublet
- Profile Grid
- Phase probes for TOF measurement
- Beam current transformers for transmission measurement
- Bunch shape monitor (Feschenko monitor)
- Slit-Grid emittance measurement device
- Transversal matching is measured in 2015
- 6d characterization of the beam

Beam Energy vs. RF-Phase and -Amplitude **IF IF** Helmholtz-Institut Mainz

M. Miski-Oglu , TASCA Workshop, 25.09.2018

НІМ

cw LINAC @ IAP

M. Basten M. Bush H. Podlech U. Ratzinger M. Schwarz

- New cryo module layout containing demonstrator CH cavity, 2 short CH cavities, 1 buncher and 2 solenoids
- Simplified cavity design (easier manufacturing & surface processing)
- CH1 & CH2 are already in production (delivery at 1th quarter of 2019)
- Tendering for cryostat at 3rd quarter of 2018
- Moderate increase of design gradient → more compact linac design or higher A/q

Tender Lot Nr.1: Cryostat

- Cryostat containing demonstrator CH cavity, 2 short
 CH cavities, 1 buncher and 2 solenoids
- He-supply by cryoplant
- Service doors allows for in situ alignment of each component to beam line
- Expected signing of contract in 11/2018
- Expected delivery in 04/2020
- "Dry" assembly with dummy components+4K test
- 4K test@GSI with STF in 09/2020

tz-Institut Mainz

Tender Lot Nr.2: Link to STF cryoplant

Supply of cryostat with 4K and 40K Helium gas

GSI

- Transfer line of total 80m
- Expected signing of contract in 11/2018
- Expected delivery in 12/2019
- Suply of testing area or/and entire cw-Linac

First RF-measurement for CH1 in a vertical cryostat

- Accelerating gradient is twice of design value
- Expected delivery of CH1/CH2 in 02/2019
- To do @HIM:
 - 4K test in horizontal cryostat
 - Integration of RF power cuplers in clean room
 - 4 K test with RF power couplers
- Integration into cryostat in 11/2020

Infrastructure @ HIM

- Clean rooms ISO6/ISO4
- RF-Bunker for testing
- RF-infrastructure:
 - 5kW RF-amplifier
 - RF control system
- He-infrastructure:
 - 3000L He-reservoire
 - Transfer lines
 - He-recovery compressor

02/2015	Funding of the Advanced Demonstrator within POF3
09/2016	Ordering of two short CH-cavities
11/2018	Tendering of cryostat
2/2019	Delivery of short cavities
05/2019	Modification of radiation protection shelter @GSI
12/2019	Link of testing area to STF cryoplant
04/2020	Delivery of cryostat
04/2021	Assembly of cryomodule @ HIM
06/2021	Beamtest @ GSI
Ļ	7

Thank You for Your attention!