

Rapid extraction of short-lived isotopes from a buffer gas cell for use in gas-phase chemistry to access elements beyond FI

S. Götz^{1,2,3}, M. Block^{1,2,3}, Ch.E. Düllmann^{1,2,3}, C. M. Folden III^{5,6}, K. J. Glennon⁵, M. Götz^{1,2,3}, E. Jäger², O. Kaleja^{2,4}, J. Krier², L. Lens^{1,2,3}, A.K. Mistry^{1,2}, S. Raeder^{1,2}, E. E. Tereshatov⁵, M. F. Volia⁵, A. Yakushev^{1,212}

¹Helmholtz-Institute Mainz, Mainz, Germany ²GSI Helmholtzentrum für Schwerionenforschung Darmstadt, Germany ³Johannes Gutenberg-Universität, Mainz, Germany ⁴Technische Universität Darmstadt, Darmstadt, Germany ⁵Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA ⁶Department of Chemistry, Texas A&M University, College Station, TX 77843, USA

In recent years, the chemical properties of the SuperHeavy Elements (SHE) copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114) and their homolos have been extensively studied [1,2]. One main motivation for performing such experiments is to elucidate the influence of relativistic effects on chemical properties of these elements [3]. Due to low production rates and short half-lives, only single atoms are available in chemical experiments. The combination of gas-phase chromatography setups with an electromagnetic preseparator like TASCA proved to be the best experimental approach for reaching the required sensitivity for atom-at-a-time chemical studies [4]. After production via fusion-evaporation reactions and separation in, e.g., TASCA, these atoms are thermalized in the gas-filled volume and flushed to the chromatography setup with a rapidly flowing gas. This approach is currently applicable to isotopes with half-lives longer than about 0.5 seconds, and is limited by the extraction time of hundreds of milliseconds for recoils under such conditions. For elements beyond Fl, half-lives of suitable isotopes drop significantly below that level. The probably most suitable isotope of moscovium (Mc, Z = 115), ²⁸⁸Mc, which is accessible directly via the ⁴⁸Ca + ²⁴³Am reaction with a comparatively high cross section of about 10 pb, and has a half-life of 164^{+30}_{-21} ms [5]. To overcome this limitation, exploratory experiments were carried out with the aim to test a potentially faster system comprising the gas phase chromatography setup COMPACT [3] coupled to an existing buffer gas stopping cell operated with electric fields [5]. In this contribution, an overview of achieved performance, further optimization of the system, and the development of a new Mini-COMPACTdesign will be discussed.

References

- [1] A. Türler et al., Nucl. Phys. A 944 (2015) 640.
- [2] L. Lens et al., Radiochim. Acta (2018) available online.
- [3] K. Pitzer, J. Chem. Phys. 63 (1975) 1032.
- [4] A. Yakushev et al., Inorg. Chem. 53 (2014) 1624.
- [5] Y. Oganessian et al., Nucl. Phys. A 944 (2015) 62.
- [6] J. Neumayr et al., Nucl. Instr. and Meth. B 244 (2006) 489.