Adsorption of the Superheavy Element Species on Gold Surface: Relativistic Density Functional Study

# Yuriy Demidov



#### **Petersburg Nuclear Physics Institute**

# **Computational details**



- shape-consistent small-core pseudopotential approach;
- highly accurate relativistic theory methods of the electron structure for simplest molecular compounds;
- two-component relativistic density functional theory for sufficiently large systems.

#### Simulation of superheavy element atom adsorption

# N = 4 N = 19 N = 37 N = 37 N = 58 Convergence criteria

cluster – SHE atom binding energy and electrical charge on SHE atom should be stable with increasing of the cluster size.

### Energetically preferable adatom position under cluster



### Nihonium single atoms adsorption on gold surface



Nh/gold adsorption energy estimates lie within the range  $106 \pm 10 \text{ kJ/mol}$ . Experimental estimation for adsorption energy Tl/gold is  $270 \pm 10 \text{ kJ/mol}$ .

A.Rusakov, Yu. Demidov, A. Zaitsevskii Cent. Eur. J. Phys. (2013)

#### Thallium single atoms adsorption on stable gold surface



Difference between Nh and Tl atoms adsorption energies $\Delta$  (DFT, present work) $99 \pm 15$  kJ/mol $\Delta$  (DFT, van Wüllen, 2012) $90 \pm 15$  kJ/mol

#### 7<sup>th</sup> Period Subperiodic Structure





Without relativistic effects Q = +0.554 Q = -0.554

Cheolbeom Bae, et. al Chem. Phys. Lett. 37, 65 (2003)

Which element is the most electronegative in 7<sup>th</sup> period?

#### Astatine single atoms adsorption on gold surface



At/gold adsorption energy estimates lie within the range  $130 \pm 10 \text{ kJ/mol}$ . Experimental estimation for adsorption energy At/gold is  $147 \pm 15 \text{ kJ/mol}$ .

### Semiempirical regularities



| Μ                            | Nh | At | ΤI  | In  |
|------------------------------|----|----|-----|-----|
| ∆H <sub>∟s</sub><br>[kJ/mol] | 66 | 28 | -22 | -62 |

Surface vacancy is formed, if partial molar solution enthalpy of the adsorbate M in the solid gold is negative.

#### Energy of surface vacancy formation for gold



| On stable surface:    | 205 ± 10 kJ/mol    | (DFT)        |
|-----------------------|--------------------|--------------|
| In vacation position: | 270 ± 10 kJ/mol (E | xperimental) |



### Hg, Cn, Fl atoms adsorption on red selenium surface

#### PRELIMINARY





#### Structure and properties of NhOH, AtOH and TIOH



Yu.Demidov, A. Zaitsevskii Chem. Phys. Lett, 638, 21 (2015)

#### AtOH adsorption on gold surface



# Thank you for attention!