Penning-Trap Mass Spectrometry of the Heaviest Elements with SHIPTRAP

Francesca Giacoppo

Helmholtz-Institut Mainz GSI Darmstadt

On behalf of the SHIPTRAP Collaboration

TASCA 18 – GSI, Darmstadt, 25 September 2018

PTMS for SHE

Existence of SHEs (Z≥104)
How heavy can elements be?
Where is the island of satbility?
What is the structure of SHEs?
...Stability due to shell effects
→ accurate binding energies!

Up to now masses of ²⁵²⁻²⁵⁵No and ^{255,256}Lr with δm/m ~ 10⁻⁷ to 10⁻⁸

M. Block et al., Nature 463, 785 (2010), M. Dworschak et al., PRC 81, 064312 (2010) E. Minaya Ramirez et al., Science 337, 1183 (2012)

F. Giacoppo

TASCA 18 – GSI, 25 September 2018

1

Mapping nuclear shell effects with direct mass measurements

2400

2200

2000

Shell gap δ_{2n} / keV

1800 SkM* 1600 1400 1200 1000 HFB 800 MM 600 FRDM 400 200 0 -200 150 152 156 158 146 148 154

M. Block., Nucl. Phys. A 944, 471 (2015)

Neutron number N

F. Giacoppo

HIM

M. Dworschak et al., Phys. Rev. C 81, 064312 (2010)

Ion storage in a Penning Trap

The SHIPTRAP setup

The Cryogenic Gas Cell

TASCA 18 – GSI, 25 September 2018

250mm

The Cryogenic Gas Cell

- ★ Larger stopping volume and coaxial injection of reaction products
- ★ Higher cleanliness due to cryogenic operation
- ★ Larger gas density at a lower absolute pressure

2015-2016: Setup relocation

HIM

Helmholtz-Institut Mainz

GSI

F. Giacoppo

The experimental hall today

TASCA 18 – GSI, 25 September 2018

НІМ

Helmholtz-Institut Mainz

F. Giacoppo

GSľ

Phase Imaging Ion-Cyclotron Resonance method PI-ICR

Radial excitation

Determination of the spatial distribution

Radial excitation followed by a phase accumulation time

$$\phi + 2\pi n = 2\pi \nu$$

$$\Delta v = \frac{\Delta \phi}{2\pi t} = \frac{\Delta R}{\pi t R}$$

Gain in Precision ≈ 4.5 Gain in resolving power ≈ 40

S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013) S. Eliseev et al., Appl. Phys. B114, 107 (2014)

Helmholtz-Institut Mainz

F. Giacoppo

Beamtime June-July 2018

	Production cross section		(Rough) Incoming ion Rate
		[nb]	
²⁵⁴ No gs & isomer		1800	1,5/s
²⁵⁵ Lr gs & isomer		200/52	0.2 /s
²⁵⁶ Lr gs		60	0.05/s
²⁵¹ No gs & isomer		30	0.05/s
²⁵⁴ Lr gs & isomer		22	0.03/s
²⁵⁷ Rf		15	0.03/s

Beamtime June-July 2018:²⁵⁶Lr

²⁵⁴No

Less than 8 h → 10 times better δm/m, resolved GS and E*≈1,2 MeV isomer

In 2010	ToF -	-ICR	\rightarrow	48 ions in 93 h	δm/m =10 ⁻⁷
In 2018	PI –ICR	\rightarrow	13	3 ions in 60 h	δm/m =10 ⁻⁹

Low ion rate = long measurements

Challenges:

♦ Reduced drift of the magnetic field → Two/three step temperature stabilization of the magnet bore

(temperature fluctuations reduced to ~ 25mV)

F. Giacoppo

HIM

♦ Reduced drift of the trapping voltage → More stable power supplies for MT temperature-controlled cabinet

(fluctuations < 1 mV)

Beamtime June-July 2018: ^{255m}Lr

Summary

- High-precision mass measurements allow probing shell effects and tracking the evolution of nuclear structure in the heaviest elements.
- Technical and methodical improvements at SHIPTRAP allow now extending the reach towards more exotic nuclides with higher Z.
 - ♦ Implementation of the Cryogenic buffer-gas cell
 - ♦ Re-arrangement of the whole beam line successfully completed
 - ♦ Development of a new measurement method, the PI-ICR technique

Successful direct measurements of the mass of 257 Rf (σ =15 nb) and low-lying isomeric states in 254,255 Lr and 251 No!

SHIPTRAP collaborators

B. Anđelić, O. Bezrodnova, K. Blaum, M. Block, S. Chenmarev,
P. Chhetri, C. Droese, M. Eibach, S. Eliseev, J. Even, P. Filianin,
S. Götz, Y. Gusev, M. Gutierrez, F. P. Hessberger, O. Kaleja,
J. van de Laar, M. Laatiaoui, S. Lohse, N. Martynova, E. Minaya
Ramirez, A. Mistry, T. Murboeck, Yu. Novikov, S. Raeder, D.
Rodriguez, F. Schneider, L. Schweikhard, P. Thirolf

