Central Depression of Nucleonic Densities Trend analysis in the nuclear DFT approach

Bastian Schuetrumpf

Institut für Kerphysik, Technische Universität Darmstadt GSI Helmholzzentrum für Schwerionenforschung

September, 2018

SPONSORED BY THE

Federal Ministry of Education and Research

Physical motivation

- Superheavy nuclei with vanishing/reduced central density (bubble/semi-bubble) expected already in the 1940s.
- Effect attributed to the electrostatic repulsion of protons.
- Central depression of light nuclei also expected in ³⁴Si, ⁴⁶Ar and ²⁰⁶Hg. Here depression is due to low occupation of s-orbitals.
- Proton density distributions probed through electron scattering. PREX and CREX can probe neutron densities of ²⁰⁸Pb and ⁴⁸Ca.

Questions:

- What is the mechanism behind central depression in both light and heavy nuclei?
- Can we gain information about nuclear matter properties from density distributions?

Decharge et al., Nucl. Phys. A 716 (2003) 55 2 / 15

Nucleonic Densities

- Proton central depression for ³⁴Si, ³⁰²Og and ⁴⁷²164. Neutron central depression only for ⁴⁷²164.
- ³⁴Si is very sensitive to EDF. (EDFs share about the same bulk properties).
- Central depression in ³⁴Si is large for SLy6 parametrization predicting large shell gap between 0d_{5/2} and 1s_{1/2}.
- In general, all models agree in heavy and superheavy nuclei.

Radial Skyrme DFT densities of ³⁴Si, ⁴⁸Ca, ²⁰⁸Pb, ³⁰²Og, and ⁴⁷²164. Shaded areas mark spread of results obtained with SV-min, SLy6, and UNEDF1.

Quantification of central depression

Modified Helm model:

• Parametrize density as:

$$\rho_H(r; R_d, \sigma) = \rho_h(r; R_d) * \rho_G(r; \sigma),$$

$$\rho_h(r; R_d) = (1 + wr^2)\rho_0 \Theta(R_d - r)$$

 $\rho_G(r; \sigma)$: Gaussian with width σ . R_d : Diffraction radius.

Quantification with

$$\bar{w} = w \cdot R_d^2$$

which can be obtained from shift of first and second zero in form factor.

• Robust with respect to shell fluctuations.

Differences of densities:

Quantification with

$$\bar{\rho}_{t,c} = (\rho_{t,av} - \rho_{t,c})/\rho_{t,av}$$

$$\begin{split} t &= (n,p) \\ \rho_{t,\mathrm{av}} &= N_t / (4/3\pi R_d^3): \text{ Average} \\ \text{density up to diffraction radius.} \\ \rho_{t,\mathrm{c}}: \text{ Central density.} \end{split}$$

- Straightforward way to quantify central depression.
- Sensitive to oscillations due to shell effects.

Coefficient of Determination (CoD)

Question: How well determined is an observable by one model parameter?

- \bullet Assessment through statistical analysis around the χ^2 minimum of EDF parametrization.
- Coefficient of determination:

$$R_{x,y}^2 = \left(\frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y}\right)^2$$

where cov(x, y) is the covariance of x and y and σ_x is the standard deviation of x.

- Gives values between 0 and 1.
- Can be evaluated for correlations between two model parameters, two observables or one observable and one model parameter.
- CoD does not give any information about the rate of change (slope).

Central Depression

- ³⁴Si proton central depression increases dramatically without pairing (large Z=14 subshell closure).
- \$\bar{w}_p\$ larger than \$\bar{w}_n\$, flat up to Z=90.
 Increases in the N=184 isotonic chain.
- $\rho_{p,c}$ increasing for N=82 and 126 isotonic chains, but flat for N=184 chain.
- Dip at ²⁰⁸Pb due to full occupation of 2s orbit.
- Correlation of central density with Coulomb energy only significant for N=184 chain.

Proton central depression \bar{w}_{ρ} (a), central density $\rho_{t,c}$ (b), and CoD between $E_{\rm Coul}$ and $\rho_{\rho,c}$ (c) predicted by SV-min. \times marks ³⁴Si values obtained without pairing.

Correlation Analysis

- ⁴⁸Ca typical for nuclei lighter than ²⁰⁸Pb, ³⁰²Og for heavier nuclei.
- CoD between measures for central depression is low for ⁴⁸Ca because of shell effects, but high for ³⁰²Og.
- CoD between observable and model parameters insignificant for ⁴⁸Ca, but large in ³⁰²Og especially with E/A, J, L, a_{surf}.

 \rightarrow Central depression in nuclei below ^{208}Pb is governed by shell effects. For superheavy nuclei CoDs reveal strong correlation with LDM parameters and Coulomb.

Matrices of CoD for SV-min parameters and selected observables in 48 Ca (upper triangle) and 302 Og (lower triangle).

Multiple Correlations

- LDM: (E/A, ρ_{eq} , K, J, L, a_{surf} , $a_{surf,s}$)
- bulk: (E/A, ρ_{eq}, K, J, L)
- sym: (J, L)
- Is+pair: $(C_t^{\rho \nabla J}, V_{\text{pair},t}, \rho_{\text{pair}}), t=(n,p)$
- $E_{\rm Coul}$ almost fully determined by LDM.
- Surface effects important for N=82 and for large Z due to competition between Coulomb and surface tension.
- $\bar{\rho}_{\rm p,c}$ largely determined by LDM, especially for superheavy nuclei.
- Symmetry energy very important for heavy and superheavy nuclei, where Coulomb determines the central depression.

Multiple correlation coefficients with E_{Coul} (a) and $\bar{\rho}_{p,c}$ (b) in heavy nuclei.

Localization for superheavy nuclei

Jerabek, B.S., Schwerdtfeger, Nazarewicz PRL 120, 053001 (2018)

 Localization: High value: One shell dominates. Low value: shells overlapping.
 0.5: Fermi gas limit.

- Neutron and proton localization function for ¹³²Sn, ³⁰²Og, and ⁴⁷²164.
- Going heavier, shell structure fades and extrema become fainter in NLF. Transition to Fermi gas.
- Effect is stronger for Neutrons, because of more particles occupying the same space (higher level density).

Charge radius isotopic shifts

- Measurement of nobelium charge radius isotopic shifts at GSI.
- DFT can describe isotopic shifts of charge radii for heavy nuclei.
- Simultaneously, DFT predicts appreciable semi-bubbles.
- Simple droplet models fail to predict isotopic shifts.

Conclusions

Light and medium mass nuclei:

- Central depression in ³⁴Si highly sensitive to the input used (interactions, EDFs).
- No strong correlation of density distribution of ⁴⁸Ca with specific parameter.

 \rightarrow Density distributions of light nuclei below ^{208}Pb especially ^{34}Si are governed by shell effects and carry little information about nuclear matter parameters.

Heavy nuclei:

- Central depression in heavy nuclei above lead is mainly driven by electrostatic repulsion.
- Since the Coulomb term has a large isovector component, the symmetry energy is strongly correlated to central depression.
- Heavy nuclei are closer to the leptodermous limit (determined by LDM parameters) and density distribution can be related better to nuclear matter parameters.
- Predicted densities are consistent with newest charge radii measurements.

Thanks to my collaborators: Witek Nazarewicz and Paul-Gerhard Reinhard.

Thank you for your attention!

Density Functional Theory with Skyrme Energy Density Functionals

• Nucleonic part of the energy density functional (EDF):

$$\mathcal{E}_{\mathrm{Sk}} = \sum_{t=0,1} \left(C_t^{\rho}(\rho_0) \rho_t^2 + C_t^{\rho \Delta \rho} \rho_t \Delta \rho_t + C_t^{\tau} \rho_t \tau_t + C_t^{\rho \nabla J} \rho_t \nabla J_t \right) \quad (t=0: \text{ isoscalar; } t=1: \text{ iso}$$

$$\mathcal{E}_{\mathrm{pair}} = \sum_{q=p,n} rac{V_{\mathrm{pair},q}}{2} \left[1 - rac{
ho_0}{
ho_{\mathrm{pair}}}
ight] ilde{
ho}^2$$

- Some constants can be expressed through nuclear matter properties:
 - ρ_{eq} Equilibrium density.
 - E/A Energy-per-nucleon at equilibrium.
 - K Incompressibility
 - m*/m Effective mass characterizing the dynamical isoscalar response.
 - J Symmetry energy.
 - L Slope of symmetry energy.

- κ Thomas-Reiche-Kuhn sum-rule enhancement characterizing the dynamical isovector response.
- asurf Surface energy coefficient
- a_{surf,s} Surface-symmetry energy coefficient.
- $C_t^{\rho \nabla J}$ Spin-orbit parameters.
- $V_{\text{pair},q}$, ρ_{pair} Pairing parameters.

Multiple correlation coefficient (MMC)

Question: How well determined is an observable by a group of model parameters?

- CoDs are not an additive quantity due to correlations between model parameters.
- Multiple correlation coefficient:

$$R_{a,x}^2 = \boldsymbol{c}^T (R_{a,a})^{-1} \boldsymbol{c}$$

where $R_{a,a}$ contains correlations between the model parameters of group a, $c = (R_{a_1,x}, R_{a_2,x}, ...)$ contains correlations between the observable and single group members.

- Value of 0.3 means that 30% of the variance of x is predictable from group a.
- If **a** contains all model parameters, $R_{a,x}^2 = 1$ always.

Correlation Analysis

- Isoscalar and isovector densities correlate weakly with nuclear matter properties and other model parameters for nuclei below ²⁰⁸Pb.
- Central densities in nuclei above lead carry information on nuclear matter properties, especially the symmetry energy.

Correlations of central densities and model parameters.