Single Event Upsets in the PANDA EMC

Results from neutron and proton irradiations of the digitiser board

M. Preston, P.-E. Tegnér (Stockholm University) H. Calén, T. Johansson, K. Makónyi, P. Marciniewski (Uppsala University)

M. Kavatsyuk, P. Schakel (University of Groningen)

PANDA FEE/DAQ Workshop, May 2018, GSI

Front-end electronics in the Electromagnetic Calorimeter

 \sim 600 front-end digitiser boards in the EMC

375 in Barrel 225 in Forward Endcap

Front-end electronics in the Electromagnetic Calorimeter

 \sim 600 front-end digitiser boards in the EMC

375 in Barrel 225 in Forward Endcap

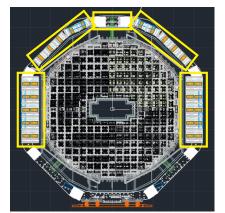
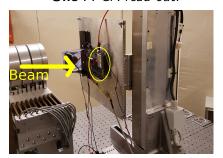


Figure courtesy of C. Schnier.

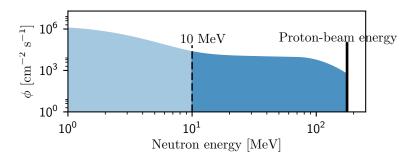

- Distributed over several crates placed around the detector perimeter.
- Two Xilinx Kintex-7 FPGAs per board.
- Of interest here: SEUs caused by neutrons and protons in FPGA.
- Interesting also for other subdetectors.

Proton irradiation

▶ In November 2016 at the AGOR cyclotron at KVI.

Proton irradiation

- ▶ In November 2016 at the AGOR cyclotron at KVI.
- Board perpendicular to the beam (covering half of the board).
 One FPGA read out.

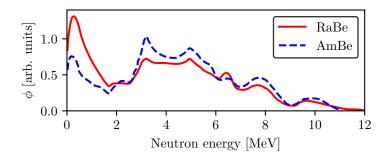

- Three proton energies:
 - ▶ 184 MeV (primary beam energy)
 - ▶ 80 and 100 MeV (with degrader)
- ► Total proton fluence:
 - $\sim 4 \cdot 10^9 \text{ cm}^{-2}$.

High-energy neutron irradiation

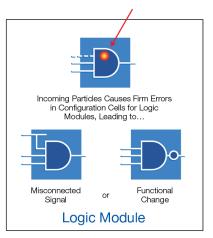
- ▶ In June 2016 at the The Svedberg Laboratory (TSL) in Uppsala.
- ▶ Proton beam (180 MeV) \rightarrow W target \rightarrow Neutron beam. Board perpendicular to the beam. **One** FPGA read out.

High-energy neutron irradiation

- ▶ In June 2016 at the The Svedberg Laboratory (TSL) in Uppsala.
- ▶ Proton beam (180 MeV) \rightarrow W target \rightarrow Neutron beam. Board perpendicular to the beam. **One** FPGA read out.
- ► Total neutron fluence: $2 \cdot 10^9$ cm⁻² (>10 MeV).

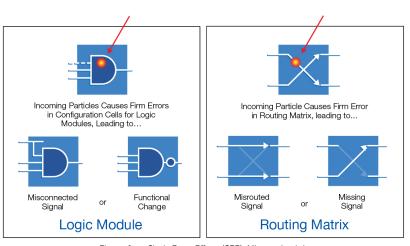


Low-energy neutron irradiation

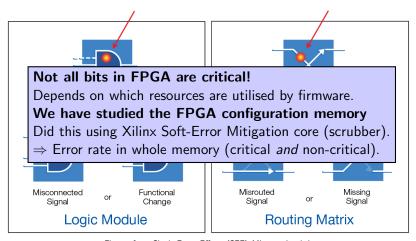

- ▶ In December 2017 January 2018 at Stockholm University.
- Separate measurements using RaBe and AmBe neutron sources. One FPGA read out.

Low-energy neutron irradiation

- ▶ In December 2017 January 2018 at Stockholm University.
- Separate measurements using RaBe and AmBe neutron sources. One FPGA read out.
- ▶ Total neutron fluence: $1 \cdot 10^{10}$ cm⁻².

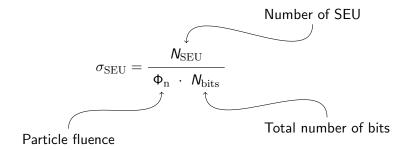


Single Event Upsets (SEUs) in FPGAs

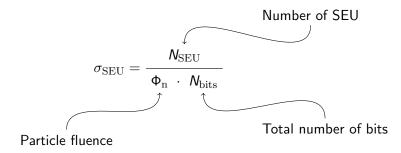

Figures from Single Event Effects (SEE), Microsemi website.

Single Event Upsets (SEUs) in FPGAs

Figures from Single Event Effects (SEE), Microsemi website.

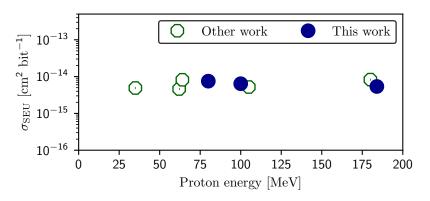

Single Event Upsets (SEUs) in FPGAs

Figures from Single Event Effects (SEE), Microsemi website.


SEU cross section

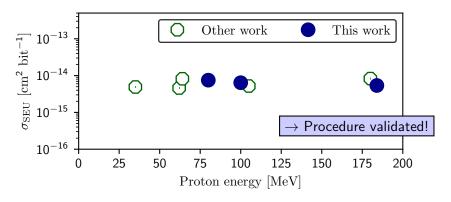
The cross section (per bit) for an SEU in the FPGA is given by

SEU cross section


The cross section (per bit) for an SEU in the FPGA is given by

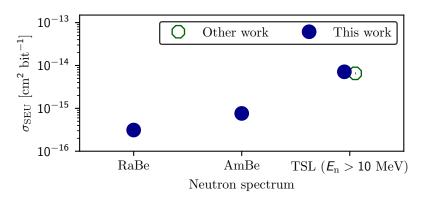
Once the cross section and particle flux are known, the *SEU rate* and *mean time between upsets* may be determined.

Proton irradiation


Good agreement with other measurements on Kintex-7:

Other work from for example ATLAS (LAr) and LHCb (RICH) groups.

Proton irradiation


Good agreement with other measurements on Kintex-7:

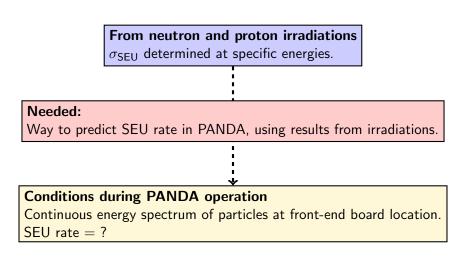
Other work from for example ATLAS (LAr) and LHCb (RICH) groups.

Neutron irradiations

Good agreement with other measurement on Kintex-7:

Other work from ATLAS (LAr) group.
TSL cross section determined from neutron fluence above 10 MeV.

What does this mean for PANDA?


From neutron and proton irradiations $\sigma_{\rm SEU}$ determined at specific energies.

Conditions during PANDA operation

Continuous energy spectrum of particles at front-end board location.

SEU rate = ?

What does this mean for PANDA?

What does this mean for PANDA?

From neutron and proton irradiations $\sigma_{\rm SEU}$ determined at specific energies.

Solution: Monte Carlo simulations

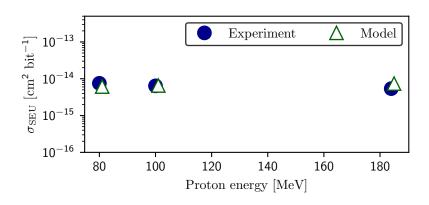
- 1) Geant4-based model of energy deposits in microelectronics $\Rightarrow \sigma_{\mathsf{SEU}}(E)$
- 2) pandaROOT simulation $\Rightarrow \Phi(E)$

Conditions during PANDA operation

Continuous energy spectrum of particles at front-end board location.

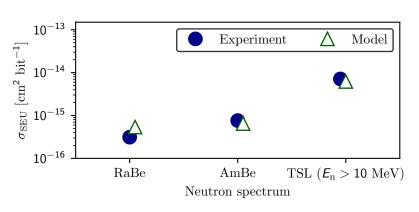
SEU rate = ?

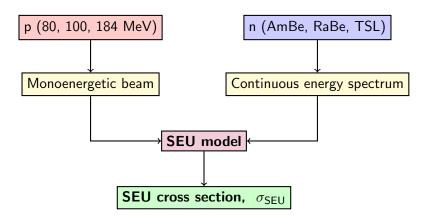
Developing the SEU model

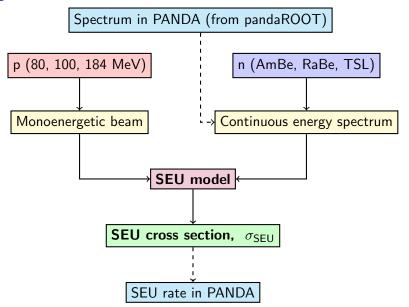

- Model of energy deposition by protons and neutrons in a memory cell.
- Principle based on standard SEU-modelling tools constructed to match Kintex-7 feature size.
- In the model, an SEU occurs if the energy deposition in the sensitive volume is larger than a critical energy.

Developing the SEU model

- Model of energy deposition by protons and neutrons in a memory cell.
- Principle based on standard SEU-modelling tools constructed to match Kintex-7 feature size.
- In the model, an SEU occurs if the energy deposition in the sensitive volume is larger than a critical energy.
- ► The values of the model parameters were determined by fitting the model to our experimental data:
 - Simulate proton and neutron beams matching experiments.
 - Fit to all our data using a full likelihood fit.
- When this was done, the model was verified by comparing the resulting cross sections with the experimental data.


SEU model verification


SEU model verification



Model works for both protons and neutrons.

Using the SEU model

Using the SEU model

- ▶ Simulations performed at antiproton momenta of 1.5, 5.2 and 8.9 GeV/c (to cover the entire phase-1 range) → neutron flux at **forward endcap** digitisers.
- ▶ All three resulting spectra used as input to the SEU model \rightarrow SEU rates (assuming $\mathcal{L}=1\cdot 10^{31}~\text{cm}^{-2}~\text{s}^{-1}$).

- ▶ Simulations performed at antiproton momenta of 1.5, 5.2 and 8.9 GeV/c (to cover the entire phase-1 range) → neutron flux at **forward endcap** digitisers.
- ▶ All three resulting spectra used as input to the SEU model \rightarrow SEU rates (assuming $\mathcal{L}=1\cdot 10^{31}~\text{cm}^{-2}~\text{s}^{-1}$).
- ▶ Error rate highest at $p_{\rm pbar} = 8.9~{\rm GeV}/c \rightarrow {\rm use}$ as worst-case scenario.

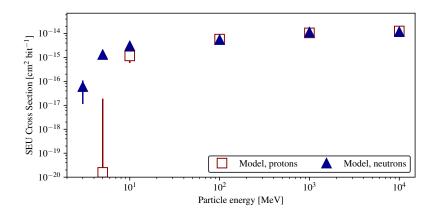
- ▶ Simulations performed at antiproton momenta of 1.5, 5.2 and 8.9 GeV/c (to cover the entire phase-1 range) → neutron flux at **forward endcap** digitisers.
- ▶ All three resulting spectra used as input to the SEU model \rightarrow SEU rates (assuming $\mathcal{L}=1\cdot 10^{31}~\text{cm}^{-2}~\text{s}^{-1}$).
- ▶ Error rate highest at $p_{\rm pbar} = 8.9~{\rm GeV}/c \rightarrow {\rm use}$ as worst-case scenario.
- ho $p_{
 m pbar} = 8.9 \ {
 m GeV}/c$, $\mathcal{L} = 1 \cdot 10^{31} \ {
 m cm}^{-2} \ {
 m s}^{-1} \Rightarrow$
 - ϕ_n at position of digitisers is $\sim 300 \text{ cm}^{-2} \text{ s}^{-1}$.
 - MTBU due to neutrons (per FPGA):
 - Any type of SEU: 18 hours.
 - ▶ SEUs not correctable by SEM: 180 hours (\sim 10% of all errors).

- ▶ Simulations performed at antiproton momenta of 1.5, 5.2 and 8.9 GeV/c (to cover the entire phase-1 range) → neutron flux at **forward endcap** digitisers.
- ▶ All three resulting spectra used as input to the SEU model \rightarrow SEU rates (assuming $\mathcal{L}=1\cdot 10^{31}~\text{cm}^{-2}~\text{s}^{-1}$).
- ▶ Error rate highest at $p_{\rm pbar} = 8.9~{\rm GeV}/c \rightarrow {\rm use}$ as worst-case scenario.
- ho $p_{
 m pbar}=8.9~{
 m GeV}/c$, ${\cal L}=1\cdot 10^{31}~{
 m cm}^{-2}~{
 m s}^{-1}$
 - ϕ_n at position of digitisers is $\sim 300 \text{ cm}^{-2} \text{ s}^{-1}$.
 - MTBU due to neutrons (per FPGA):
 - Any type of SEU: 18 hours.
 - \blacktriangleright SEUs not correctable by SEM: 180 hours (\sim 10% of all errors).
- ► These values include a safety factor of 10 relative to the results predicted by the model.

Outlook: Error-mitigation?

- At PANDA startup, triple modular redundancy is probably not necessary when it comes to the FPGA configuration.
- ▶ Xilinx SEM protects the configuration (by scrubbing), and can be used in *enhanced* mode repairs some multi-bit upsets as well \rightarrow decreases uncorrectable-error rate from $\sim \! \! 10\% \rightarrow \! \! \! \sim \! \! 2\%$ (takes up more resources). Full protection: store copy of bitstream which can replace damaged one.

Outlook: Error-mitigation?


- At PANDA startup, triple modular redundancy is probably not necessary when it comes to the FPGA configuration.
- ▶ Xilinx SEM protects the configuration (by scrubbing), and can be used in *enhanced* mode repairs some multi-bit upsets as well \rightarrow decreases uncorrectable-error rate from $\sim \! \! 10\% \rightarrow \! \! \! \sim \! \! 2\%$ (takes up more resources). Full protection: store copy of bitstream which can replace damaged one.
- Protection for other parts of the FPGA (like Block Memory) has to be incorporated in design.

Outlook: Error-mitigation?

- At PANDA startup, triple modular redundancy is probably not necessary when it comes to the FPGA configuration.
- ▶ Xilinx SEM protects the configuration (by scrubbing), and can be used in *enhanced* mode repairs some multi-bit upsets as well \rightarrow decreases uncorrectable-error rate from $\sim \! \! 10\% \rightarrow \! \! \! \sim \! \! 2\%$ (takes up more resources). Full protection: store copy of bitstream which can replace damaged one.
- Protection for other parts of the FPGA (like Block Memory) has to be incorporated in design.
- ▶ At higher luminosities, TMR might be needed.
- In any case, watch-dog mechanisms have to be included in FPGA design.
- ▶ All this should be taken into account when designing the final firmware (mitigation approach depends on which resources are used). ⇒ Topic for further discussion.

Thank you!

Extra slide: σ_{SEU} energy dependence

